首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals’ residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.  相似文献   

2.
This paper presents the results of a feasibility cytogenetic study using the fluorescence in situ hybridization (FISH) translocation assay for residents of villages located on the Techa River (Southern Urals, Russia) contaminated with liquid radioactive wastes from the Mayak plutonium facility in 1949-1956. The study was conducted with two groups of donors that differed in their main pathways of exposure. The first group comprised 18 residents of the middle Techa region who were exposed predominantly from ingestion of radionuclides (mostly (89,90)Sr) via the river water and local foodstuffs. The second group included 20 residents of Metlino, the closest village to the site of releases, who were exposed to external γ radiation from the contaminated river bank and exposed internally from dietary intake of radionuclides. A significant linear dependence between the radiation-induced translocation frequency and individual red bone marrow dose from incorporated (89,90)Sr, calculated with the Techa River Dosimetry System (TRDS), was found in the first group of donors. This allowed us to take the contribution of (89,90)Sr to the total radiation-induced translocation frequency into account for the second group of donors and to analyze translocations resulting from external γ-ray exposure. Individual doses from external exposure derived from the corrected translocation frequency for the second group of donors (Metlino residents), using a linear dose-response coefficient of 0.015 translocation/cell/Gy recommended by Edwards et al. in 2005, were shown to vary up to 2.1 Gy, with an average value of 0.48 Gy, which was in agreement with TRDS-based external dose estimates for Metlino residents.  相似文献   

3.
More accurate reconstruction of the radioactive contamination of the Techa River system in 1949–1951 has been made on the basis of refined data on the amounts and the rate of discharge of radionuclides into the Techa River from the Mayak Production Association; this has led to the development of a modified Techa River model that describes the transport of radionuclides through the up-river ponds and along the Techa River and deposition of radionuclides in the river-bottom sediments and flooded areas. The refined Techa River source-term data define more precisely the time-dependent rates of release and radionuclide composition of the releases that occurred during 1949–1951. The Techa River model takes into account the time-dependent characteristics of the releases and considers (a) the transport of radionuclides adsorbed on solid particles originally contained in the discharges or originating in the up-river ponds as a result of stirring up of contaminated bottom sediments and (b) the transport of radionuclides in soluble form. The output of the Techa River model provides concentrations of all source-term radionuclides in the river water, bottom sediments, and floodplain soils at different distances from the site of radioactive releases for the period of major contamination in 1950–1951. The outputs of the model show good agreement with historical measurements of water and sediment contamination. In addition, the river-model output for 90Sr concentration in the river water is harmonized with retrospective estimates derived from the measurements of 90Sr in the residents of the Techa Riverside villages. Modeled contamination of the floodplain soils by 137Cs is shown to be in agreement with the values reconstructed from late measurements of this radionuclide. Reconstructed estimates of the Techa River contamination are being used for the quantification of internal and external doses received by residents of the Techa Riverside communities.  相似文献   

4.
During 1949–1956, about 76 × 106 m3 of radioactive liquid waste containing a total activity of 1017 Bq was discharged into the Techa River by the first Russian industrial nuclear facility Mayak. As a consequence, the population living in the river valley received considerable internal and external radiation doses. The results of a first application of electron paramagnetic resonance (EPR) of tooth enamel for a retrospective individual dose evaluation of the residents of the Techa riverside are presented. Three main contributions to the dose absorbed in tooth enamel have been considered: external exposure mainly from the Techa River sediments, internal exposure mainly due to 90Sr; and background radiation including all other sources of exposure except the Techa River. The teeth of 86 inhabitants of the town Kamensk-Uralskii were analysed to determine the age-dependent contribution of the background radiation to the enamel dose. For 22 residents of the middle and lower Techa riverside, measurements of the 90Sr whole-body content and EPR measurements of the absorbed dose in enamel were used to establish a correlation between these two quantities. Finally, absorbed doses in the enamel of five residents of the upper Techa riverside were determined by the EPR method. Contributions of the background radiation and the internal 90Sr contamination were subtracted to determine the external exposure of the residents.  相似文献   

5.
In the late 1940s and early 1950s the nuclear workers of the Mayak Production Association in the Southern Urals were exposed to high doses from gamma-rays and from incorporated plutonium. In addition, the population of the Techa riverside downstream of the plutonium-production sites received continued exposures from external gamma-rays due to fission products released into the river and from the internal radiation due to incorporation of the fission products. Based on two international coordination meetings in 1998 and 2000, a synopsis has been given recently in this journal of the radioepidemiological studies on these exposed populations. This commentary describes the current status of these singular investigations with regard to the dosimetry, the assessment of late health effects, and the risk estimation both for the Mayak nuclear workers and the Techa riverside population. A central issue are newly published reduced estimates of the external dose to the Techa riverside population which imply substantially increased risk coefficients for solid cancer. Unless the new dosimetry system, TRDS-2000, has missed a major dose contribution, there is now conspicuous disagreement with current risk estimates. Unaccounted doses from atmospheric releases of fission products and from radiological screening of the Techa riverside population need to be explored, but underestimation of the short lived fission products released into the river appears to be a more critical factor. It is furthermore argued that even if TRDS-2000 were confirmed it would remain questionable whether risk estimates can be based on organ-specific doses when they are obtained in a population with a much higher bone-marrow exposure that may possibly have caused an 'abscopal' radiation effect.  相似文献   

6.
The aim of the present study was to evaluate the influence of the exclusion of cells with unstable aberrations in the elaboration of dose-effect curves for translocations and their implications in biological dosimetry of past exposures. To establish dose-effect curves, peripheral blood samples were irradiated with 60Co gamma rays at ten different doses and the yield of translocations analyzed by FISH was considered in all cells and in stable cells (those without dicentrics, acentrics or rings). To discriminate transmissible translocations, the dose- effect curve for total apparently simple translocations in stable cells was chosen as the reference. In stable cells, dose- effect curves for apparently simple translocations without pseudosimple and complex-derived one-way patterns, tAbtBa and total translocations were obtained. None of these curves differed from the reference curve. When all cells were considered, only the curve for total translocations was significantly different from the reference curve. From the results obtained it can be concluded that the use of dose-effect curves for apparently simple translocations in stable cells and in all cells will give similar dose estimates in retrospective biological dosimetry studies. However, the use of dose-effect curves for total translocations in all cells will lead to underestimations of the dose mainly at high doses.  相似文献   

7.
The Techa River (Southern Urals, Russia) was contaminated as a result of radioactive releases by the Mayak plutonium production facility during 1949-1956. The persons born after the onset of the contamination have been identified as the "Techa River Offspring Cohort" (TROC). The TROC has the potential to provide direct data on health effects in progeny that resulted from exposure of a general parent population to chronic radiation. The purpose of the present investigation is the estimation of (90)Sr intake from breast milk and river water in the period from birth to 6 months of life, necessary for an infant dose calculation. The investigation is based on all available data concerning radioactive contamination due to global fallouts and Mayak releases in the Southern Urals where extensive radiometric and radiochemical investigations of human tissues and environmental samples were conducted during the second half of the twentieth century. The strontium transfer factor from mother's daily diet to breast milk was estimated as 0.05 (0.01-0.13) d L(-1). Based on this transfer factor and data on (90)Sr water contamination, the average total (90)Sr intake for an infant born in the middle Techa River region was found to be equal to 60-80 kBq in 1950-1951. For the same period, calculations of (90)Sr intake using ICRP models gave values of 70-100 kBq. From 1952 onwards, the differences in intakes calculated using the two approaches increased, reaching a factor of 2-3 in 1953. The Techa River data provide the basis for improving and adapting the ICRP models for application to Techa River-specific population.  相似文献   

8.
Bone cancer mortality risks were evaluated in 11,000 workers who started working at the "Mayak" Production Association in 1948-1958 and who were exposed to both internally deposited plutonium and external gamma radiation. Comparisons with Russian and U.S. general population rates indicate excess mortality, especially among females, plutonium plant workers, and workers with external doses exceeding 1 Sv. Comparisons within the Mayak worker cohort, which evaluate the role of plutonium body burden with adjustment for cumulative external dose, indicate excess mortality among workers with burdens estimated to exceed 7.4 kBq (relative risk = 7.9; 95% CI = 1.6-32) and among workers in the plutonium plant who did not have routine plutonium monitoring data based on urine measurements (relative risk = 4.1; 95% CI = 1.2-14). In addition, analyses treating the estimated plutonium body burden as a continuous variable indicate increasing risk with increasing burden (P < 0.001). Because of limitations in current plutonium dosimetry, no attempt was made to quantify bone cancer risks from plutonium in terms of organ dose, and risk from external dose could not be reliably evaluated.  相似文献   

9.
  The military and civilian nuclear activities in the former Soviet Union led to unique exposures and resulted in high cumulative doses in several populations. In comparison to the atomic bomb survivors, at present the most important cohort in radiation epidemiology, collective and individual doses received by early workers in the plutonium production facilities at Mayak (Chelyabinsk), Techa River residents downstream of Mayak, populations downwind of the Semipalatinsk test site, and subpopulations of Chernobyl victims surpass the Hiroshima/Nagasaki experience in most cases. Even more importantly, the dose rates cover the full range of exposures relevant for radiation protection, i.e., acute to year-long chronic exposures from environmental contamination and bone seeking radionuclides. Parallel to the humanitarian need to mitigate health effects from these exposures, the unique opportunities for research on radiation risks related to low dose rate and chronic radiation have to be explored. Increased efforts by the global radiation research community are needed to address the many questions which cannot be answered by the acutely irradiated survivors of Hiroshima/Nagasaki. Specific attention needs to be drawn to the validation of available exposure and health records and to dose reconstruction which must include dietary sources of exposure. Preliminary intercomparison and validation exercises indicate potentially large sources of error, e.g., due to uncertainties in the reconstruction of early exposures and effects and due to continuing incorporation. Received: 29 February 1996 / Accepted in revised form: 6 March 1996  相似文献   

10.
Liver cancer mortality risks were evaluated in 11,000 workers who started working at the "Mayak" Production Association in 1948-1958 and who were exposed to both internally deposited plutonium and external gamma radiation. Comparisons with Russian liver cancer incidence rates indicate excess risk, especially among those with detectable plutonium body burdens and among female workers in the plutonium plant. Comparisons within the Mayak worker cohort which evaluate the role of plutonium body burden with adjustment for cumulative external dose indicate excess risk among workers with burdens estimated to exceed 7.4 kBq (relative risk = 17; 95% CI = 8. 0-36) and among workers in the plutonium plant who did not have routine plutonium monitoring data based on urine measurements (relative risk = 2.8; 95% CI = 1.3-6.2). In addition, analyses treating the estimated plutonium body burden as a continuous variable indicate increasing risk with increasing burden (P < 0.001). Relative risks tended to be higher for females than for males, probably because of the lower baseline risk and the higher levels of plutonium measured in females. Because of limitations in current plutonium dosimetry, no attempt was made to quantify liver cancer risks from plutonium in terms of organ dose, and risk from external dose could not be reliably evaluated.  相似文献   

11.
An area located in the Southern Urals was contaminated in 1949–1956 as a result of radioactive waste releases into the Techa river by the Mayak Production Association. The external dose reconstruction of the Techa river dosimetry system (TRDS-2000) for the exposed population is based on an assessment of dose rates in air (DRA) obtained by modeling transport and deposition of radionuclides along the river for the time before 1952 and by gamma dose rate measurements since 1952. The aim of this paper is to contribute to a verification of the TRDS-2000 external dose assessment. Absorbed doses in bricks from a 130-year-old building in the heavily exposed Metlino settlement were measured by a luminescence technique. By the autumn of 1956 the population of Metlino had been evacuated, and then a water reservoir was created at the village location, which led to a change in the radioactive source geometry. Radiation transport calculations for assumed environmental sources before and since 1957 were performed with the MCNP Monte Carlo code. In combination with TRDS-2000 estimates for annual dose rates in air at the shore of the Techa river for the period 1949–1956 and contemporary dose rate in air measurements, absorbed doses in bricks were calculated. These calculations were performed deterministically with best estimates of the modeling parameters and stochastically by propagating uncertainty distributions through the calculation scheme. Assessed doses in bricks were found to be consistent with measured values within the uncertainty bounds, while their best estimates were approximately 15% lower than the luminescence measurements.An erratum to this article can be found at  相似文献   

12.
In the 1950s many thousands of people living in rural villages on the Techa River received protracted internal and external exposures to ionizing radiation from the release of radioactive material from the Mayak plutonium production complex. The Extended Techa River Cohort includes 29,873 people born before 1950 who lived near the river sometime between 1950 and 1960. Vital status and cause of death are known for most cohort members. Individualized dose estimates have been computed using the Techa River Dosimetry System 2000. The analyses provide strong evidence of long-term carcinogenic effects of protracted low-dose-rate exposures; however, the risk estimates must be interpreted with caution because of uncertainties in the dose estimates. We provide preliminary radiation risk estimates for cancer mortality based on 1,842 solid cancer deaths (excluding bone cancer) and 61 deaths from leukemia. The excess relative risk per gray for solid cancer is 0.92 (95% CI 0.2; 1.7), while those for leukemia, including and excluding chronic lymphocytic leukemia, are 4.2 (CI 95% 1.2; 13) and 6.5 (CI 95% 1.8; 24), respectively. It is estimated that about 2.5% of the solid cancer deaths and 63% of the leukemia deaths are associated with the radiation exposure.  相似文献   

13.
The major part of the liquid radioactive waste released by the Mayak Production Association (PA) radiochemical plant into the Techa river occurred in 1949-1951, but there is information on only one single radiochemical analysis of a water sample taken on 24 and 25 September 1951. These data are here used to assess the spectrum of radionuclides that were released between 1949 and 1951. For this purpose, details of the radiochemical methods of radionuclide extraction and radiometric measurements of beta-activity used at Mayak PA in the 1950s have been taken into account. It is concluded that the data from the radiochemical measurements agree with the theoretical composition of fission products in uranium after exposure times in the reactor (120 days) and subsequent hold times (35 days) that were typical for the procedures at that time. The results of the analysis are at variance with assumptions that underlie the current Techa river dosimetry system. They confirm the conclusion that the external doses to the Techa river residents in the critical period up to 1952 were predominantly due to short-lived fission products.  相似文献   

14.
The Mayak worker cohort is one of the major sources of information on health risks due to protracted exposures to plutonium and external ionizing radiation. Electron paramagnetic resonance (EPR) measurements in tooth enamel in combination with personal dose monitoring can help to improve external dose assessment for this cohort. Here, the occupational lifetime external exposure was evaluated individually for 44 nuclear workers of three plants of the Mayak Production Association by EPR measurements of absorbed doses in collected tooth enamel samples. Analysis included consideration of individual background doses in enamel and dose conversion coefficients specific for photon spectra at selected work areas. As a control, background doses were assessed for various age groups by EPR measurements on teeth from non-occupationally exposed Ozyorsk residents. Differences in occupational lifetime doses estimated from the film badges and from enamel for the Mayak workers were found to depend on the type of film badge and the selected plant. For those who worked at the radiochemical processing plant and who were monitored with IFK film badges, the dose was on average 570 mGy larger than estimated from the EPR measurements. However, the average difference was found to be only −4 and 6 mGy for those who were monitored with IFKU film badges and worked at the reactor and the isotope production plant respectively. The discrepancies observed in the dose estimates are attributed to a bias in film badge evaluation.N. El-Faramawy: On leave from Department of Physics, Faculty of Science, Ain Shams University, 65511 Abbassia, Cairo, Egypt.  相似文献   

15.
In this study the solid cancer mortality data in the Techa River Cohort in the Southern Urals region of Russia was analyzed. The cohort received protracted exposure in the 1950s due to the releases of radioactive materials from the Mayak plutonium complex. The Extended Techa River Cohort includes 29,849 people who resided along the Techa River between 1950 and 1960 and were followed from January 1, 1950 through December 31, 1999. The analysis was done within the framework of the biologically based two-stage clonal expansion (TSCE) model. It was found that about 2.6% of the 1854 solid cancer deaths (excluding 18 bone cancer cases) could be related to radiation exposure. At age 63, which is the mean age for solid cancer deaths, the excess relative risk (ERR) and excess absolute risk (EAR) were found to be 0.76 Gy(-1) (95% CI 0.23; 1.29) and 33.0 (10(4) PY Gy)(-1) (95% CI 9.8; 52.6), respectively. These risk estimates are consistent with earlier excess relative risk analyses for the same cohort. The change in the ERR with age was investigated in detail, and an increase in risk with attained age was observed. Furthermore, the data were tested for possible signs of genomic instability, and it was found that the data could be described equally well by a model incorporating effects of genomic instability. Results from the TSCE models indicated that radiation received at older ages might have stronger biological effects than exposure at younger ages.  相似文献   

16.
The present communication describes the technical aspects of the first application of an imaging plate for visualization of (90)Sr deposited in human teeth. The teeth were obtained from Techa River area residents who were exposed as a result of releases of radioactivity into the Techa River by the first Soviet nuclear plant Mayak in the early 1950s. The investigations form the basis for an experimental procedure for accurate mapping of the distribution of (90)Sr in teeth with an imaging plate. This new method can be used as an individual indicator of radionuclide intake. Its advantages are its high sensitivity (0.02 Bq/g mm(-2) of (90)Sr), it ability to examine small detectable cross-sectional areas of dental tissue (dentin) contaminated with (90)Sr (from 0.01 mm(2)), the nondestructive method of analysis, and the simplicity of use. The combined application of this method with EPR tooth biodosimetry can provide more accurate dose reconstruction and may lead to more effective radiation risk assessment.  相似文献   

17.
Residents living on the banks of the Techa River in the Southern Urals region of Russia were exposed to radioactive contamination from the Mayak plutonium production and separation facility that discharged liquid radioactive waste into this river. This paper describes the methods used to establish and follow the Extended Techa River Cohort (ETRC), which includes almost 30,000 people living along the Techa River who were exposed to a complex mixture of radionuclides, largely 90Sr and 137Cs. The system of regular follow-up allows ascertainment of vital status, cause of death and cancer incidence. With over 50 years of follow-up and over 50% deceased, the ETRC now provides a valuable opportunity to study a wide range of health effects, both early and late, associated with protracted internal and external radiation exposures. The wide range of doses allows analysis of the nature of the dose-response relationship based on internal comparisons. Other features of the cohort are the high proportion (40%) exposed under age 20, and the inclusion of both sexes. The limitations of the study include loss to follow-up due to difficulties in tracing some cohort members and migration and incomplete ascertainment of cause of death.  相似文献   

18.
The method of fluorescence in situ hybridization (FISH) applied to peripheral blood T lymphocytes is used for retrospective dose estimation, and the results obtained from the analysis of stable chromosomal aberrations are usually interpreted as a dose accumulated in the red bone marrow (RBM). However, after local internal exposure of the RBM, doses derived from FISH were found to be lower than those derived from direct measurements of radionuclides accumulated in the bodies of exposed persons. These results were obtained for people residing near the Techa River contaminated by 89,90Sr (beta-emitters) in 1949–1956 (Chelyabinsk Oblast, Russia). A new analysis has been performed of the combined results of FISH studies (n = 178) undertaken during 1994–2012 for persons living on the Techa Riverside. Analysis confirms the lower slope of the translocation yield per Gy (8.0 ± 0.7 × 10?3) for Techa residents in comparison with FISH data for donors with external exposures (11.6 ± 1.6 × 10?3, Tawn et al., Radiat Res 184(3):296–303, 2015). It was suggested that some portion of T cells remained unexposed, because they represented the descendants of T cell progenitors, which had migrated to the thymus before the start of 89,90Sr intakes. To clarify this problem, the dynamics of T-cell Genera (TG), combining all descendants of specific T-cell progenitor reaching the thymus, was considered. Rates of TGs produced by RBM over different age periods of human life were estimated with the use of the mathematic model of T-cell homeostasis (Bains, Mathematical modeling of T-cell homeostasis. A thesis submitted for the degree of Doctor of Philosophy of the University College London. http://discovery.ucl.ac.uk/20159/1/20159.pdf, 2010). The rate of TG loss during the lifetime was assumed to be very small in comparison with production rate. The recirculation of mature T lymphocytes in contaminated RBM was taken into account. According to our model estimates, at the time of blood sampling, the fraction of exposed T lymphocytes (whose progenitors were irradiated) ranged from 20 to 80% depending on the donors’ age at the start of exposure to 89,90Sr. Dose to T lymphocytes, estimated from FISH studies, should be about 0.6–0.9 of RBM dose for residents of the upper Techa region and about 0.4–0.8 in the middle Techa region. Our results could explain the lower value of translocation yield per Gy obtained for Techa residents. The approaches for further model improvement and validation are discussed in this paper.  相似文献   

19.
Radioecological studies carried out in a joint co-operation between Russian, Ukrainian and Danish Laboratories are reported. The environmental impact of routine, discharges as well as accidental events, notably the Kyshtym accident in 1957 and the Karachay wind dispersion in 1968 have been studied. From measurements and based on model assumptions it has been estimated that the Ob river system outside Mayak, i.e. first of all the Techa and Iset rivers and their floodplains contain 0.1 PBq 90Sr, 0.3 PBq 137Cs and 0.8 TBq 239, 240Pu. The uncertainty of these estimates is a factor of 3-4. The present contamination from the Kyshtym accident outside the Mayak area is calculated to 0.1-0.5 PBq 90Sr and from the Karachay incident the contamination is 0.05-0.1 Bq 137Cs. The environmental contaminations with Pu from these two events are in the order of 1 TBq. The occurrence of 99Tc, 129I and 237Np in highly contaminated Techa river sediments collected outside Mayak is for the first time reported.  相似文献   

20.
Beginning in 1950, people living on the banks of the Techa River received chronic low-dose-rate internal and external radiation exposures as a result of releases from the Mayak nuclear weapons plutonium production facility in the Southern Urals region of the Russian Federation. The Techa River cohort includes about 30,000 people who resided in riverside villages sometime between 1950 and 1960. Cumulative red bone marrow doses range up to 2 Gy with a mean of 0.3 Gy and a median of 0.2 Gy. Between 1953 and 2005, 93 first primary cases of leukemia, including 23 cases of chronic lymphatic leukemia (CLL), were ascertained among the cohort members. A significant linear dose–response relationship was seen for leukemias other than CLL (P < 0.001), but not for CLL. The estimated excess relative risk per Gy is 4.9 (95% confidence interval (CI): 1.6; 14.3) for leukemias other than CLL and less than 0 (95% upper bound 1.4) for CLL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号