首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The preparation of highly purified myosin from surgical specimen of human uterine muscle is described. Antibodies were raised in rabbits against this immunogen. In immunodiffusion, they react with uterine and chicken gizzard muscle myosin, no reaction is observed between uterine myosin and the anti-chicken-gizzard- myosin. In immunofluorescence, antiuterine-myosin stains smooth muscle in the contractile and modulated state and non-muscle cells such as fibroblasts, platelets and endothelium of various species. Thus, these antibodies contrast anti-gizzard-myosin, which has previously been shown to be specific for contractile state muscle cells. We therefore conclude that the uterine myosin preparation consists of two immunogens, the one being associated with cell contractility and the other, termed cytoplasmic myosin, with motility and mitosis. The latter is indistinguishable from the myosin present in non-muscle cells and can be absorbed specifically with actomyosin from blood platelets.Abbreviations ATP Adenosine triphosphate - DNAse I Deoxyribonuclease I - DTE Dithioerythritol - SDS Sodiumdodecylsulfate - PAGE Polyacrylamide electrophoresis  相似文献   

2.
Fluorescently labeled smooth muscle myosin II is often used to study myosin II dynamics in non-muscle cells. In order to provide more specific tools for tracking non-muscle myosin II in living cytoplasm, fluorescent analogues of non-muscle myosin IIA and IIB were prepared and characterized. In addition, smooth and non-muscle myosin II were labeled with both cy5 and rhodamine so that comparative, dynamic studies may be performed. Non-muscle myosin IIA was purified from bovine platelets, non-muscle myosin IIB from bovine brain, and smooth muscle myosin II from turkey gizzards. After being fluorescently labeled with tetramethylrhodamine-5-iodoacetamide or with a succinimidyl ester of cy5, they retained the following properties: (1) reversible assembly into thick filaments, (2) actin-activatable MgATPase, (3) phosphorylation by myosin light chain kinase, (4) increased MgATPase upon light-chain phosphorylation, (5) interconversion between 6S and 10S conformations, and (6) distribution into endogenous myosin II-containing structures when microinjected into cultured cells. These fluorescent analogues can be used to visualize isoform-specific dynamics of myosin II in living cells. J. Cell. Biochem. 68:389–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
A myosin light chain kinase has been obtained in a partially purified form from human blood platelets and bovine brain. The kinase from both sources required Ca2+ and the modulator protein for its activity. The subunit molecular weight is approximately 105,000 daltons. These kinases are therefore similar to the smooth muscle kinase (Dabrowska, R., Aromatorio, D., Sherry, J. M. F., and Hartshorne, D. J. (1977) Biochem. Biophys. Res. Commun. 78, 1263–1272). It is suggested that the role of the myosin light chain kinase is similar in both muscle and non-muscle cells and serves to activate the contractile apparatus, via the phosphorylation of myosin, in response to an increase in the intracellular free Ca2+ concentration.  相似文献   

4.
Myosin heavy chains (MHCs) from rat aorta smooth muscle cells were analyzed prior to and after these cells were placed into cell culture using sodium dodecyl sulfate-5% polyacrylamide gels, immunoblots, and two-dimensional peptide maps of tryptic digests. Rat aorta smooth muscle cells prior to culture were found to contain two MHCs (mass = 204 and 200 kDa) which cross-reacted with antibodies raised to smooth muscle myosin, but not with antibodies raised to platelet myosin. Tryptic peptide maps of these two MHCs showed no major differences when compared to each other and to maps of vas deferens and uterus smooth muscle MHCs. When rat aorta smooth muscle cells were placed into culture, the MHCs isolated from the cell extracts differed, depending on whether the cells were rapidly growing or postconfluent. Extracts from log-phase cultures contained predominantly MHCs that migrated more rapidly than smooth muscle myosin in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (mass = 196 kDa) and cross-reacted with antibodies raised to platelet myosin, but not to smooth muscle myosin. Tryptic peptide maps of this MHC were very similar to those obtained with MHCs from non-muscle sources such as platelets and fibroblasts. In contrast, extracts from postconfluent rat aorta cell cultures contained three MHCs (mass = 204, 200, and 196 kDa). Using immunoblots and peptide maps, the fastest migrating MHC was found to be identical to the 196-kDa non-muscle MHC, while the two slower migrating MHCs had the same properties as aorta smooth muscle MHCs prior to culture. These results suggest that smooth muscle cells grown in primary culture contain predominantly (greater than 80%) non-muscle myosin while actively growing, but at a postconfluent stage, contain more equivalent amounts of smooth muscle and non-muscle myosins.  相似文献   

5.
Structural and functional properties of the non-muscle tropomyosins   总被引:10,自引:0,他引:10  
Summary The non-muscle tropomyosins (TMs), isolated from such tissues as platelets, brain and thyroid, are structurally very similar to the muscle TMs, being composed of two highly -helical subunits wound around each other to form a rod-like molecule. The non-muscle TMs are shorter than the muscle TMs; sequence analysis demonstrates that each subunit of equine platelet TM consists of 247 amino acids, 37 fewer than for skeletal muscle TM. The major differences in sequence between platelet and skeletal muscle TM are found near the amino and carboxyl terminal ends of the proteins. Probably as the result of such alterations, the non-muscle TMs aggregate in a linear end-to-end manner much more weakly than do the muscle TMs. Since end-to-end interactions are responsible for the highly cooperative manner in which TM binds to actin, the non-muscle TMs have a lower affinity for actin filaments than do the muscle TMs. However, the attachment of other proteins to actin (e.g. the Tn-I subunit of skeletal muscle troponin or the S-1 subfragment of skeletal muscle myosin) can increase the affinity of actin filaments for non-muscle TM. The non-muscle TMs interact functionally with the Tn-I component of skeletal muscle troponin to inhibit the ATPase activity of muscle actomyosin and with whole troponin to regulate the muscle actomyosin ATPase in a Ca++-dependent manner, even though one of the binding sites for troponin on skeletal TM is missing in non-muscle TM. A novel actomyosin regulatory system can be produced using Tn-I, calmodulin and non-muscle TM; in this case inhibition is released when the non-muscle TM detaches from the actin filament in the presence of Ca++. Although it has not yet been demonstrated that the non-muscle TMs participate in a Ca++-dependent contractile regulatory system in vivo it does appear that they are associated with actin filaments in vivo.  相似文献   

6.
7.
Non-muscle myosin II (NMII) plays a role in many fundamental cellular processes including cell adhesion, migration, and cytokinesis. However, its role in mammalian vascular function is not well understood. Here, we investigated the function of NMII in the biomechanical and signalling properties of mouse aorta. We found that blebbistatin, an inhibitor of NMII, decreases agonist-induced aortic stress and stiffness in a dose-dependent manner. We also specifically demonstrate that in freshly isolated, contractile, aortic smooth muscle cells, the non-muscle myosin IIA (NMIIA) isoform is associated with contractile filaments in the core of the cell as well as those in the non-muscle cell cortex. However, the non-muscle myosin IIB (NMIIB) isoform is excluded from the cell cortex and colocalizes only with contractile filaments. Furthermore, both siRNA knockdown of NMIIA and NMIIB isoforms in the differentiated A7r5 smooth muscle cell line and blebbistatin-mediated inhibition of NM myosin II suppress agonist-activated increases in phosphorylation of the focal adhesion proteins FAK Y925 and paxillin Y118. Thus, we show in the present study, for the first time that NMII regulates aortic stiffness and stress and that this regulation is mediated through the tension-dependent phosphorylation of the focal adhesion proteins FAK and paxillin.  相似文献   

8.
A monoclonal antibody (3D10) recognizing myosin heavy chain was isolated following immunization with a synthetic peptide sequence of eight amino acids. The antibody reacted with purified rabbit skeletal myosin and light mero-myosin in enzyme-linked immunosorbent assays and Western immunoblotting. A band of approximately 200 kDa was detected in cell extracts of an embryonal carcinoma (EC) cell line (P19EC) and one of its cloned differentiated derivatives, suggesting reactivity against non-muscle myosin. By indirect immunofluorescence, typical myosin banding patterns were observed in cryostat sections of human skeletal and cardiac muscle tissue. In undifferentiated P19EC cells, speckled immunofluorescent staining was observed in the cytoplasm that became organized in cortical rings where the cells made direct contact with each other. These rings consisted of circular bundles of F-actin decorated by myosin. Undifferentiated embryonic stem (ES) cells derived directly from mouse embryos shared the same features, although the pattern was less pronounced. Human testicular primary germ cell tumours showed cortical staining in the embryonal carcinoma component reminiscent of the staining of EC cells in vitro while cytoplasmic staining was observed in tumour cells with a differentiated morphology. In preimplantation embryos, the immunofluorescent staining was observed at cell apices of blastomeres of morula stage embryos. In blastocysts, staining of inner cell mass cells was not detectable. By contrast, various differentiated derivatives of P19EC contained extensive F-actin microfilament bundles throughout the cytoplasm decorated with myosin. Thick stress fibers in filopodious extensions of cells were particularly highly decorated by myosin. Over the nucleus, linear arrays of myosin containing speckled patterns of immunofluorescence were observed that were not associated with F-actin. The same pattern of staining could be observed in trophectoderm cells of the blastocyst. We conclude that embryonic non-muscle myosin is organized in specific patterns depending on the state of differentiation. As the myosin is primarily associated with F-actin we suspect that it forms part of a contractile apparatus that may have significance during embryonic development.  相似文献   

9.
Tropomyosin and caldesomon reciprocally control the actomyosin system in smooth muscle and some non-muscle cells. To compare this mechanism between arterial smooth muscle and platelets, we carried out extensive exchange experiments. Actin, myosin, tropomyosin from arterial smooth muscle cells and platelets were recombined and the effects of two species of caldesmon ('caldesmon77' and 'caldesmon140') on the ATPase activities of both systems were examined and analyzed by the method of analysis of variance. (a) The actomyosin system itself is different between artery and platelets, the difference being determined by myosin (P less than 0.05) and not by actin. (b) Platelet tropomyosin differentiates platelet actin from arterial actin (P less than 0.01), while arterial tropomyosin does not. Neither does tropomyosin differentiate myosin. (c) The effect of caldesmon77 differentiates the origins of myosin (P less than 0.01), actin (P less than 0.05) and tropomyosin (P less than 0.05). The effect of caldesmon140 differentiates the origin of myosin (P less than 0.05) and the actin-myosin 'interaction' (combination) (P less than 0.01), but not the origin of tropomyosin (P greater than 0.1). (1) It is concluded that actomyosin/tropomyosin-caldesmon system is distinguishable between platelets and artery. (2) It is suggested that caldesmon is an actomyosin inhibitor which may interact with myosin, in addition to actin and tropomyosin.  相似文献   

10.
Expression of the non-muscle myosin heavy chain-B (NM-MHC-B, also denoted as the embryonic smooth muscle myosin heavy chain, SMemb) was examined in rat urinary bladder during growth in response to a partial urinary outflow obstruction. Following obstruction, the weight of the urinary bladder increased more than five-fold within 10 days. Immunohistochemistry with a polyclonal antiserum against the C-terminal sequence of NM-MHC-B revealed very few NM-MHC-B immunoreactive cells in the control urinary bladders. In hypertrophic bladders, the number of NM-MHC-B immunoreactive cells markedly increased. The majority of such cells were found in the interstitium surrounding smooth muscle bundles and also in the subserosal and submucosal layers. Western blot analysis showed that the NM-MHC-B expression was transient; the content of NM-MHC-B immunoreactive material had doubled 10 days after obstruction and then declined towards the control level after 6 weeks. Immunohistochemistry revealed co-localization of NM-MHC-B and vimentin within the same cells. NM-MHC-B did not co-localize with smooth muscle actin, suggesting that the source of NM-MHC-B is not a de-differentiated smooth muscle cell or myofibroblast but a non-muscle cell possibly reacting to tissue distension or stress. The NM-MHC-B-positive cells could have a role in the production of extracellular matrix and growth factors or be involved in modulation of spontaneous contractile activity.  相似文献   

11.
ABSTRACT: BACKGROUND: Myosin II (or Myosin Heavy Chain II, MHCII) is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa) and striated muscle cells (MHCIIb). Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. RESULTS: We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa) has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa...) and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. CONCLUSION: MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2) has retained MHCIIa-like expression features furthermore suggests that muscular expression of the other paralogue, PpiMHCIIb1, was the result of neofunctionalisation within the ctenophore lineage, making independent origin of ctenophore muscle cells a likely option.  相似文献   

12.
To our knowledge, the problem of how to maintain isolated smooth cells in a "contractile" phenotypic state without deviation after subculturing has yet to be resolved. The present study characterized the in vitro contractile response of human uterine smooth muscle cell to endothelin-1, which induces contractions in isolated uterine strips. Contractile effects were qualitatively investigated using silicone rubber substrata. Endothelin-1 was able to distort and reduce the wrinkles in the silicone surface. Contractions were also quantified by measuring the resulting change in the collagen lattice area. Endothelin-1 significantly increased the contractile response in a dose-dependent manner by selectively activating endothelin A receptors. When myometrial cells were cultured within collagen lattices, a microfilament-disrupting agent, cytochalasin B, abolished contractions, and no change was observed in smooth muscle alpha-actin immunostaining. Taken together, these observations show that the uterine smooth muscle cells are contractile and respond appropriately to a potent uterotonic agent. Based on these findings, a cultured uterine smooth muscle cell model, which could be used to elucidate the mechanisms controlling uterine activity, is proposed.  相似文献   

13.
Bandopadhyay  R.  Orte  C.  Lawrenson  J.G.  Reid  A.R.  De Silva  S.  Allt  G. 《Brain Cell Biology》2001,30(1):35-44
Evidence from a variety of sources suggests that pericytes have contractile properties and may therefore function in the regulation of capillary blood flow. However, it has been suggested that contractility is not a ubiquitous function of pericytes, and that pericytes surrounding true capillaries apparently lack the machinery for contraction. The present study used a variety of techniques to investigate the expression of contractile proteins in the pericytes of the CNS. The results of immunocytochemistry on cryosections of brain and retina, retinal whole-mounts and immunoblotting of isolated brain capillaries indicate strong expression of the smooth muscle isoform of actin (α-SM actin) in a significant number of mid-capillary pericytes. Immunogold labelling at the ultrastructural level showed that α-SM actin expression in capillaries was exclusive to pericytes, and endothelial cells were negative. Compared to α-SM actin, non-muscle myosin was present in lower concentrations. By contrast, smooth muscle myosin isoforms, were absent. Pericytes were strongly positive for the intermediate filament protein vimentin, but lacked desmin which was consistently found in vascular smooth muscle cells. These results add support for a contractile role in pericytes of the CNS microvasculature, similar to that of vascular smooth muscle cells.  相似文献   

14.
RhoA/rho-associated kinase mediates fibroblast contractile force generation   总被引:4,自引:0,他引:4  
The intracellular signals governing contractile force generation by non-muscle cells remain uncertain. Our aim was to test the hypothesis that the rhoA/rho-associated kinase signaling pathway is a principal mediator of contractile force generation in non-muscle cells. We measured myosin II regulatory light chain (MLC) phosphorylation and directly quantitated force generation by chicken embryo fibroblasts in the absence and presence of selective inhibitors of rhoA, and its downstream effector, rho-associated kinase. Inactivation of rhoA, with C3 transferase, inhibited serum-stimulated MLC phosphorylation and contractile force generation. Y-27632, an inhibitor of rho-associated kinase, reduced basal contractile tension, and inhibited both serum and endothelin-1 stimulated MLC phosphorylation and contractile force generation. The results of this study provide novel evidence indicating that the rhoA/rho-associated kinase signaling pathway is a principal mediator of MLC phosphorylation and consequent contractile force generation by non-muscle cells.  相似文献   

15.
The actin-myosin cytoskeleton is generally accepted to produce the contractile forces necessary for cellular processes such as cell rounding and migration. All vertebrates examined to date are known to express at least two isoforms of non-muscle myosin II, referred to as myosin IIA and myosin IIB. Studies of myosin IIA and IIB in cultured cells and null mice suggest that these isoforms perform distinct functions. However, how each myosin II isoform contributes individually to all the cellular functions attributed to "myosin II" has yet to be fully characterized. Using isoform-specific small-interfering RNAs, we found that depletion of either isoform resulted in opposing migration phenotypes, with myosin IIA- and IIB-depleted cells exhibiting higher and lower wound healing migration rates, respectively. In addition, myosin IIA-depleted cells demonstrated impaired thrombin-induced cell rounding and undertook a more motile morphology, exhibiting decreased amounts of stress fibers and focal adhesions, with concomitant increases in cellular protrusions. Cells depleted of myosin IIB, however, were efficient in thrombin-induced cell rounding, displayed a more retractile phenotype, and maintained focal adhesions but only in the periphery. Last, we present evidence that Rho kinase preferentially regulates phosphorylation of the regulatory light chain associated with myosin IIA. Our data suggest that the myosin IIA and IIB isoforms are regulated by different signaling pathways to perform distinct cellular activities and that myosin IIA is preferentially required for Rho-mediated contractile functions.  相似文献   

16.
1. Primary heart cell cultures from neonatal hamsters yielded a heterogeneous cell population, containing muscle cells undergoing progressive differentiation, as well as non-muscle cells. 2. Addition of 5-bromo-2'-deoxyuridine, at an early stage, to such cultures enhanced the formation of beating sheets of differentiated muscle cells. Accumulation of myosin heavy chains and creatine kinase also occurred in the presence of the analogue. 3. To obtain these effects, the analogue had to be added during the initial rapid growth phase of the cells. Division of the treated cells then ceased when the cell numbers had approximately doubled. 4. Similar results were obtained with other inhibitors of DNA synthesis. Thus improved muscle cell cultures can be obtained by preventing non-muscle cells from overgrowing the cultures. 5. One effect caused only by 5-bromo-2'-deoxyuridine was a large increase in the Ca2+-stimulated ATPase (adenosine triphosphatase) activity which sedimented at low ionic strength. This increase was not due to a greater content of myofibrillar myosin, or to myosin isoenzyme changes, because purified myosin prepared from treated and untreated cultures did not exhibit the increased Ca2+-stimulated ATPase activity.  相似文献   

17.
Myosin has been identified in a variety of non-muscle cells, and is believed to play a role in maintenance of cell shape, locomotion, cytokinesis, exocytosis and other cellular functions. In this paper we describe the purification of myosin from a pancreatic acinar-cell carcinoma of the rat which forms solid tumours, but retains many differentiated functions. The purified myosin was composed of a 200,000 Da heavy chain and two or three classes of light chains. Electron-microscopic examination of rotary-shadowed preparations revealed that individual molecules had two globular heads and a long tail measuring approx. 149 nm. The myosin was soluble in high-salt buffers and became sedimentable as the ionic strength was lowered. Examination of negative-stained preparations showed that this sedimentable myosin consisted of short, bipolar, thick filaments which had a strong tendency to aggregate in a head-to-head manner. The ATPase activity of the purified myosin was stimulated by EDTA or Ca2+, but not by Mg2+. In low ionic strength the Mg2+-dependent ATPase activity was activated by muscle f-actin. The pancreatic myosin bound to actin and could be dissociated by the addition of MgATP. Myosin purified from cells cultured in media containing [32P]Pi was phosphorylated on one of the light chains as well as the heavy chain. Thus pancreatic acinar cells contain a typical non-muscle myosin, and the subunits of this molecule are subject to post-translational modification by phosphorylation.  相似文献   

18.
We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.  相似文献   

19.
Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.  相似文献   

20.
Myosin light chain kinases have been isolated from rat thigh and rabbit skeletal muscle and cultured rat myoblasts. From these preparations, two types of kinases can be distinguished: calcium-dependent and calcium-independent. Both types of kinases can phosphorylate isolated P-light chains of myosin from several sources (skeletal muscle, cardiac muscle, and platelet). Data are shown which support the phosphorylation of the same site on the non-muscle P-light chains by both types of kinases. The rates of these reactins are, however, different for the two types of kinases. Kinetic analysis of the myoblast kinase shows differing affinities for various P-light chains (non-muscle greater than cardiac greater than skeletal). In the proliferative rat myoblast, phosphorylation of myosin is a prerequisite for actin activation of the myosin ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号