首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of in vitro DNA-binding assays for a mutant protein (Q44K) of the E. coli methionine repressor, MetJ, as well as the crystal structure at 2.2 A resolution of the apo-mutant bound to a 10-mer oligonucleotide encompassing an 8 bp met-box sequence. The wild-type protein binds natural operators co-operatively with respect to protein concentration forming at least a dimer of repressor dimers along operator DNAs. The minimum operator length is thus 16 bp, each MetJ dimer interacting with a single met-box site. In contrast, the Q44K mutant protein can also bind stably as a single dimer to 8 bp target sites, in part due to additional contacts made to the phosphodiester backbone outside the 8 bp target via the K44 side-chains. Protein-protein co-operativity in the mutant is reduced relative to the wild-type allowing the properties of an intermediate on the pathway to operator site saturation to be examined for the first time. The crystal structure of the decamer complex shows a unique conformation for the protein bound to the single met-box site, possibly explaining the reduced protein-protein co-operativity. In both the extended and minimal DNA complexes formed, the mutant protein makes slightly different contacts to the edges of DNA base-pairs than the wild-type, even though the site of amino acid substitution is distal from the DNA-binding motif. Quantitative binding assays suggest that this is not due to artefacts caused by the crystallisation conditions but is most likely due to the relatively small contribution of such direct contacts to the overall binding energy of DNA-protein complex formation, which is dominated by sequence-dependent distortions of the DNA duplex and by the protein-protein contact between dimers.  相似文献   

2.
The Met regulon in Escherichia coli encodes several proteins responsible for the biosynthesis of methionine. Regulation of the expression of most of these proteins is governed by the methionine repressor protein MetJ and its co-repressor, the methionine derivative S-adenosylmethionine. Genes controlled by MetJ contain from two to five sequential copies of a homologous 8-bp sequence called the metbox. A crystal structure for one of the complexes, the repressor tetramer bound to two metboxes, has been reported (Somers, W. S., and S. E. Phillips (1992) Nature 359, 387-393), but little structural work on the larger assemblies has been done presumably because of the difficulties in crystallization and the variability in the number and sequences of metboxes for the various genes. Small angle neutron scattering was used to study complexes of MetJ and S-adenosylmethionine with double-stranded DNA containing two, three, and five metboxes. Our results demonstrate that the crystal structure of the two-metbox complex is not the native solution conformation of the complex. Instead, the system adopts a less compact conformation in which there is decreased interaction between the adjacent MetJ dimers. Models built of the higher order complexes from the scattering data show that the three-metbox complex is organized much like the two-metbox complex. However, the five-metbox complex differs significantly from the smaller complexes, providing much closer packing of the adjacent MetJ dimers and allowing additional contacts not available in the crystal structure. The results suggest that there is a structural basis for the differences observed in the regulatory effectiveness of MetJ for the various genes of the Met regulon.  相似文献   

3.
The bacteriophage 434 repressor distinguishes between its six naturally occurring binding sites using indirect readout. In indirect readout, sequence-dependent differences in the structure and flexibility of non-contacted bases in a protein's DNA-binding site modulate the affinity of DNA for protein. The conformation and flexibility of a DNA sequence can be influenced by the interaction of the DNA bases or backbone with solution components. We examined the effect of changing the cation-type present in solution on the stability and structure of 434 repressor complexes with wild-type and mutant OR1 and OR3, binding sites that differ in their contacted and non-contacted base sequences. We find that the affinity of repressor for OR1, but not for OR3, depends remarkably on the type and concentration of monovalent cation. Moreover, the formation of a stable, specific repressor-OR1 complex requires the presence of monovalent cations; however, repressor-OR3 complex formation has no such requirement. Changing monovalent cation type alters the ability of repressor to protect OR1, but not OR3, from *OH radical cleavage. Altering the relative length of the poly(dA) x poly(dT) tract in the non-contacted regions of the OR1 and OR3 can reverse the cation sensitivity of repressor's affinities for these two sites. Taken together these findings show that cation-dependent alterations in DNA structure underlies indirect readout of DNA sequence by 434 repressor and perhaps other proteins.  相似文献   

4.
The specificity of LexA protein binding was investigated by quantifying the repressibility of several mutant recA and lexA operator-promoter regions fused to the Escherichia coli galactokinase (galK) gene. The results of this analysis indicate that two sets of four nucleotides, one set at each end of the operator (terminal-nucleotide contacts), are most critical for repressor binding. In addition, our results suggest that the repressor-operator interaction is symmetric in nature, in that mutations at symmetrically equivalent positions in the recA operator have comparable effects on repressibility. The symmetry of this interaction justified reevaluation of the consensus sequence by half-site comparison, which yielded the half-site consensus (5')CTGTATAT. Although the first four positions of this sequence were most important, the last four were well conserved among binding sites and appeared to modulate repressor affinity. The role of the terminal-nucleotide contacts and the mechanism by which the internal sequences affected repressor binding are discussed.  相似文献   

5.
A structural model for the interaction of the LexA repressor DNA binding domain (DBD) with operator DNA is derived by means of Monte Carlo docking. Protein–DNA complexes were generated by docking the LexA repressor DBD NMR solution structure onto both rigid and bent B-DNA structures while giving energy bonuses for contacts in agreement with experimental data. In the resulting complexes, helix III of the LexA repressor DBD is located in the major groove of the DNA and residues Asn-41, Glu-44, and Glu-45 form specific hydrogen bonds with bases of the CTGT DNA sequence. Ser-39, Ala-42, and Asn-41 are involved in a hydrophobic interaction with the methyl group of the first thymine base. Residues in the loop region connecting the two β-sheet strands are involved in nonspecific contacts near the dyad axis of the operator. The contacts observed in the docked complexes cover the entire consensus CTGT half-site DNA operator, thus explaining the specificity of the LexA repressor for such sequences. In addition, a large number of nonspecific interactions between protein and DNA is observed. The agreement between the derived model for the LexA repressor DBD/DNA complex and experimental biochemical results is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

6.
7.
We have analyzed the DNA binding properties of Tet-repressor mutants with single amino acid residue replacements at eight positions within the alpha-helix-turn-alpha-helix DNA-binding motif. A saturation mutagenesis of Gln38, Pro39, Thr40, Tyr42, Trp43 and His44 in the second alpha-helix was performed; in addition, several substitutions of Thr27 and Arg28 in the first alpha-helix were constructed. The abilities of these mutant repressors to bind a set of 16 operator variants were determined and revealed 23 new binding specificities. All repressor mutants with DNA-binding activity were inducible by tetracycline, while mutants lacking binding activity were trans-dominant over the wild-type. All mutant proteins were present at the same intracellular steady-state concentrations as the wild-type. These results suggest the structural integrity of the mutant repressors. On the basis of the new recognition specificities, five contacts between a repressor monomer and each operator half-site and the chemical nature of these repressor-operator interactions are proposed. We suggest that Arg28 contacts guanine of the G.C base-pair at operator position 2 with two H-bonds, Gln38 binds adenine of the A.T base-pair at position 3 with two H-bonds, and the methyl group of Thr40 participates in a van der Waals' contact with cytosine of the G.C base-pair at position 6 of tet operator. A previously unrecognized type of interaction is proposed for Pro39, which inserts its side-chain between the methyl groups of the thymines of T.A and A.T base-pairs at positions 4 and 5. Computer modeling of these proposed contacts reveals that they are possible using the canonical structures of the helix-turn-helix motif and B-DNA. These contacts suggest an inverse orientation of the Tet repressor helix-turn-helix with respect to the operator center as compared with non-inducible repressor-operator complexes, and are supported by similar contacts of other repressor-operator complexes.  相似文献   

8.
Indirect readout of tRNA for aminoacylation   总被引:1,自引:0,他引:1  
Perona JJ  Hou YM 《Biochemistry》2007,46(37):10419-10432
Aminoacylation of tRNA by aminoacyl-tRNA synthetases is the essential reaction that matches protein amino acids with the trinucleotide sequences specified in mRNA. Direct electrostatic interactions made by tRNA synthetases with discriminating functional groups on the tRNA bases have long been known to determine aminoacylation specificity. However, structural and biochemical studies have revealed a second "indirect readout" mechanism that makes an important contribution as well. In indirect readout, the sequence-dependent conformations of tRNA are recognized through protein contacts with the sugar-phosphate backbone and with nonspecific portions of the bases. This mechanism appears to function in single-stranded regions, in canonical A-type duplex segments, and in the complex tertiary core portion of the tRNA. Operation of the indirect mechanism is not exclusive of the direct mechanism, and both are further mediated by induced-fit rearrangements, in which enzyme and tRNA undergo precise conformational changes after formation of an initial encounter complex. The examples of indirect readout in tRNA synthetase complexes extend the concept beyond its traditional application to DNA duplexes and serve as models for the operation of this mechanism in more complex systems such as the ribosome.  相似文献   

9.
The sequence of non-contacted bases at the center of the 434 repressor binding site affects the strength of the repressor-DNA complex by influencing the structure and flexibility of DNA (Koudelka, G. B., and Carlson, P. (1992) Nature 355, 89-91). We synthesized 434 repressor binding sites that differ in their central sequence base composition to test the importance of minor groove substituents and/or the number of base pair hydrogen bonds between these base pairs on DNA structure and strength of the repressor-DNA complex. We show here that the number of base pair H-bonds between the central bases apparently has no role in determining the relative affinity of a DNA site for repressor. Instead we find that the affinity of DNA for repressor depends on the absence or presence the N2-NH(2) group on the purine bases at the binding site center. The N2-NH(2) group on bases at the center of the 434 binding site appears to destabilize 434 repressor-DNA complexes by decreasing the intimacy of the specific repressor-DNA contacts, while increasing the reliance on protein contacts to the DNA phosphate backbone. Thus, the presence of an N2-NH(2) group on the purines at the center of a binding site globally alters the precise conformation of the protein-DNA interface.  相似文献   

10.
The 31P NMR spectra of various 14-base-pair lac operators bound to both wild-type and mutant lac repressor headpiece proteins were analyzed to provide information on the backbone conformation in the complexes. The 31P NMR spectrum of a wild-type symmetrical operator, d(TGTGAGCGCTCACA)2, bound to the N-terminal 56-residue headpiece fragment of a Y7I mutant repressor was nearly identical to the spectrum of the same operator bound to the wild-type repressor headpiece. In contrast, the 31P NMR spectrum of the mutant operator, d(TATAGAGCGCTCATA)2, wild-type headpiece complex was significantly perturbed relative to the wild-type repressor-operator complex. The 31P chemical shifts of the phosphates of a second mutant operator, d(TGTGTGCGCACACA)2, showed small but specific changes upon complexation with either the wild-type or mutant headpiece. The 31P chemical shifts of the phosphates of a third mutant operator, d(TCTGAGCGCTCAGA)2, showed no perturbations upon addition of the wild-type headpiece. The 31P NMR results provide further evidence for predominant recognition of the 5'-strand of the 5'-TGTGA/3'-ACACT binding site in a 2:1 protein to headpiece complex. It is proposed that specific, strong-binding operator-protein complexes retain the inherent phosphate ester conformational flexibility of the operator itself, whereas the phosphate esters are conformationally restricted in the weak-binding operator-protein complexes. This retention of backbone torsional freedom in strong complexes is entropically favorable and provides a new (and speculative) mechanism for protein discrimination of different operator binding sites. It demonstrates the potential importance of phosphate geometry and flexibility on protein recognition and binding.  相似文献   

11.
The crystal structure of Escherichia coli cysteinyl-tRNA synthetase (CysRS) bound to tRNA(Cys) at a resolution of 2.3 A reveals base-specific and shape-selective interactions across an extensive protein-RNA recognition interface. The complex contains a mixed alpha/beta C-terminal domain, which is disordered in the unliganded enzyme. This domain makes specific hydrogen bonding interactions with all three bases of the GCA anticodon. The tRNA anticodon stem is bent sharply toward the enzyme as compared with its conformation when bound to elongation factor Tu, providing an essential basis for shape-selective recognition. The CysRS structure also reveals interactions of conserved enzyme groups with the sugar-phosphate backbone in the D loop, adjacent to an unusual G15.G48 tertiary base pair previously implicated in tRNA aminoacylation. A combined mutational analysis of enzyme and tRNA groups at G15.G48 supports the notion that contacts between CysRS and the sugar-phosphate backbone contribute to recognition by indirect readout.  相似文献   

12.
The P22 c2 repressor protein (P22R) binds to DNA sequence-specifically and helps to direct the temperate lambdoid bacteriophage P22 to the lysogenic developmental pathway. We describe the 1.6 A X-ray structure of the N-terminal domain (NTD) of P22R in a complex with a DNA fragment containing the synthetic operator sequence [d(ATTTAAGATATCTTAAAT)]2. This operator has an A-T base pair at position 9L and a T-A base pair at position 9R and is termed DNA9T. Direct readout: nondirectional van der Waals interactions between protein and DNA appear to confer sequence-specificity. The structure of the P22R NTD-DNA9T complex suggests that sequence-specificity arises substantially from lock-and-key interaction of a valine with a complementary binding cleft on the major groove surface of DNA9T. The cleft is formed by four methyl groups on sequential base pairs of 5'-TTAA-3'. The valine cleft is intrinsic to the DNA sequence and does not arise from protein-induced DNA conformational changes. Protein-DNA hydrogen bonding plays a secondary role in specificity. Indirect readout: it is known that the noncontacted bases in the center of the complex are important determinants of affinity. The protein induces a transition of the noncontacted region from B-DNA to B'-DNA. The B' state is characterized by a narrow minor groove and a zigzag spine of hydration. The free energy of the transition from B- to B'-DNA is known to depend on the sequence. Thus, the observed DNA conformation and hydration allows for the formulation of a predictive model of the indirect readout phenomenon.  相似文献   

13.
J J Hayes  T D Tullius 《Biochemistry》1989,28(24):9521-9527
We report a new technique for quickly determining which nucleosides in a DNA molecule are contacted by a sequence-specific DNA-binding protein. Our method is related to the recently reported "missing contact" experiment [Brunelle, A., & Schleif, R. F. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 6673-6679]. We treat the DNA molecule with the hydroxyl radical to randomly remove nucleosides. The ability of protein to bind to gapped DNA is assayed by gel mobility shift. Nucleosides important to protein binding are identified by sequencing gel electrophoresis. The missing nucleoside experiment can be used to scan a DNA molecule at single-nucleotide resolution in one experiment. The bacteriophage lambda repressor-OR1 and cro-OR1 complexes were analyzed to evaluate the method. For both proteins, the most important contacts are located in the protein monomer that binds to the consensus half of the operator. These contacts correspond well to those found by mutational studies, and in the cocrystal structure of the lambda repressor-operator. The missing nucleoside data show that the amino-terminal arms of lambda repressor make energetically important contacts with positions 7 and 8 and the central dyad base pair of the operator. The amino-terminal arm that makes the most extensive contacts to DNA appears to be the one that emanates from the repressor monomer that binds to the consensus half of the operator, in agreement with the cocrystal structure. The lambda cro protein does not have an amino-terminal arm, and the missing nucleoside experiment clearly shows a lack of contacts to DNA in the central region of the operator in this complex.  相似文献   

14.
15.
16.
The affinity of synthetic P22 operators for P22 repressor varies with the base sequence at the operator's center. At 100 mM KCl, the affinity of these operators for P22 repressor varies over a 10-fold range. Dimethylsulfate protection experiments indicate that the central bases of the P22 operator are not contacted by the repressor. The KD for the complex of P22 repressor with an operator bearing central T-A bases (9T) increases less than 2-fold between 50 and 200 mM KCl, whereas the KD for the complex of repressor with an operator bearing central C-G bases (9C) increases 10-fold in the same salt range. The DNase I cleavage patterns of both bound and unbound P22 operators also vary with central base sequence. The DNase I pattern of the repressor-9C operator complex changes markedly with salt concentration, whereas that of the 9T operator-repressor complex does not. These changes in nuclease digestion pattern thereby mirror the salt-dependent changes in the P22 operator's affinity for repressor. P22 repressor protects the central base pair of the 9T operator from cleavage by the intercalative cleavage reagent Cu(I)-phenanthroline, while repressor does not protect the central bases of the 9C operator. Together these data indicate that central base pairs affect P22 operator strength by altering the structure of the unbound operator and the repressor-operator complex.  相似文献   

17.
18.
19.
The gal operon is regulated by binding of Gal repressor to two operator loci, OE and OI, which are separated by 114 base pairs (bp). We have probed the actual operator DNA segments with and without Gal repressor occupation by characterizing the regions protected by repressor from DNase I digestion and dimethyl sulfate methylation. The segments which are protected from DNase I digestion in both OE and OI are about 22 bp long and seem to include 2-3 extra bp on either side of a 16-bp similar sequence containing an approximate dyad symmetry, with a consensus half-symmetry sequence GTG(G/T)AA-C. Repressor occupation hinders the reactivity of the consensus guanines in the four half-symmetry sequences, as shown by retardation of methylation at the N-7 positions by dimethyl sulfate owing to repressor binding. The protected guanines are symmetrically located. Since a dimeric Gal repressor affects symmetrically located bases, it is consistent with the notion that each half-operator is occupied by a repressor subunit. Because the N-7 positions of methylation of guanines lie in the major grooves and the protected guanines are located at positions 1, 3, 8 and the rotational 1', 3', and 8' in the 16-bp dyad symmetry, we suggest that Gal repressor establishes direct contacts with bases at 1, 3, 1', and 3' through two major grooves lying on one face of an operator helix and prevents reactivity of the guanines at 8 and 8' of a third major groove on the opposite face by changing the DNA helical structure at this position. Contacts at other positions are also discussed.  相似文献   

20.
Each of 22 amino acids in the proposed alpha-helix-turn-alpha-helix operator binding motif of the Tn10 encoded Tet repressor was replaced by alanine and one residue was replaced by valine to determine their role in tet operator recognition by a 'loss of contact' analysis with 16 operator variants. One class of amino acids consisting of T27 and R28 in the first alpha-helix and L41, Y42, W43 and H44 in the recognition alpha-helix are quantitatively most important for wild-type operator binding. These residues are probably involved in the structural architecture of the motif. A second class of residues is quantitatively less important for binding, but determines specificity by forming base pair specific contacts to three positions in tet operator. This property is most clearly demonstrated for Q38 and P39 and to a lesser extent for T40 at the N-terminus of the recognition alpha-helix. The contacted operator base pairs indicate that the N-terminus of the recognition alpha-helix is located towards the palindromic center in the repressor-operator complex. Although the orientation of the recognition alpha-helix in the Tet repressor-tet operator complex is inversed as compared with the lambda- and 434 repressor-operator complexes, the reduced operator binding of the TA27 mutation in the first alpha-helix suggests that the hydrogen bonding networks connecting the two alpha-helices may be similar in these proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号