首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used polyclonal antisera recognizing S100, a small acidic protein highly enriched in nervous tissue, to stain sections of embryonic chicken lumbosacral spinal cord and hindlimb. S100 immunoreactivity was detected in developing sensory neurons of the dorsal root ganglia (DRG) and motor neurons of the ventral spinal cord as early as embryonic day (E) 5, and staining persisted through hatching. In contrast, expression of S100 first became apparent in Schwann cells at E13, just before myelination, and was not detected in developing skin or muscle. Since S100β was present in motor and sensory neurons and is known to promote neuronal survival and neurite extension in vitro (Winningham-Major, Staecker, Barger, Coats, and Van Eldik, 1989), we tested the ability of S100 to promote neuron survival in an in ovo survival assay. Addition of S100 to chick embryos in ovo during the period of naturally occurring motor neuron cell death resulted in a significant increase in motor neuron survival, but had no effect on the in vivo survival of sensory neurons in the DRG. The findings that S100 is present in spinal motor neurons and that the addition of S100 enhances the survival of these cells in vivo are consistent with the possibility that S100 may act as a naturally occurring neuron survival factor during development. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
3.
4.
Rat skeletal muscle contains a 22 kd polypeptide that increases the level of choline acetyltransferase (ChAT) activity in cultures of embryonic rat spinal cord neurons and has been purified to homogeneity. The application of this factor, ChAT development factor or CDF, to developing chick embryos during the period of naturally occurring motoneuron cell death significantly increased the survival of motoneurons but did not affect the survival of dorsal root ganglion neurons or sympathetic preganglionic neurons (column of Terni). These results provide the first demonstration that an isolated, skeletal muscle-derived molecule can selectively enhance the survival of motoneurons in vivo and suggest that CDF may function in vivo to regulate the survival and development of motoneurons.  相似文献   

5.
6.
7.
Bax is a proapoptotic protein that is required for programmed cell death (PCD) of many neuronal populations. Here we show that, during an early period of retinal PCD and in naturally occurring sensory and motor neuron (MN) death in the spinal cord, Bax delivery results in enhanced death of these neural populations. In contrast, Bax overexpression fails to enhance an early phase of MN death that occurs in the cervical spinal cord, although overexpressed Bax appears to be activated in dying MNs. Bax overexpression does not also affect the survival of immature neurons prior to the PCD period. Taken together, these data provide the first in vivo evidence suggesting that Bax appears to act selectively as an executioner only in neurons undergoing PCD. Furthermore, although Bax appears to mediate the execution pathway for PCD, the effect of Bax overexpression on susceptibility to death differs between different neuronal populations.  相似文献   

8.
Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.  相似文献   

9.
Adult spinal cord motor and dorsal root ganglion (DRG) sensory neurons express multiple neuregulin-1 (NRG-1) isoforms that act as axon-associated factors promoting neuromuscular junction formation and Schwann cell proliferation and differentiation. NRG-1 isoforms are also expressed by muscle and Schwann cells, suggesting that motor and sensory neurons are themselves acted on by NRG-1 isoforms produced by their peripheral targets. To test this hypothesis, we examined the expression of the NRG-1 receptor subunits erbB2, erbB3, and erbB4 in rat lumbar DRG and spinal cord. All three erbB receptors are expressed in these tissues. Sciatic nerve transection, an injury that induces Schwann cell expression of NRG-1, alters erbB expression in DRG and cord. Virtually all DRG neurons are erbB2- and erbB3-immunoreactive, with erbB4 also detectable in many neurons. In spinal cord white matter, erbB2 and erbB4 antibodies produce dense punctate staining, whereas the erbB3 antibody primarily labels glial cell bodies. Spinal cord dorsal and ventral horn neurons, including alpha-motor neurons, exhibit erbB2, erbB3, and erbB4 immunoreactivity. Spinal cord ventral horn also contains a population of small erbB3+/S100beta+/GFAP- cells (GFAP-negative astrocytes or oligodendrocytes). We conclude that sensory and motor neurons projecting into sciatic nerve express multiple erbB receptors and are potentially NRG-1 responsive.  相似文献   

10.
rhCNTF对鸡胚感觉与运动神经元神经营养作用的比较   总被引:4,自引:0,他引:4  
在无血清培养条件下,观察了重组人睫状营养因子(rhCNTF)对鸡胚背根节感觉神经元及腹角运动神经元的营养作用。结果表明rhCNTF对这两类神经元均有明显的促存活作用,并呈一定的剂量/效应关系。rhCNTF浓度在0.5ng/ml以下时无作用,1.0-1.5ng/ml时已有促神经元存活作用,4ng/ml时作用最明显,再增加到100ng/ml神经元存活数无进一步增加。比较培养7天时两类神经元存活数发现感觉神经元对CNTF缺乏的敏感性高于运动神经元,提示CNTF对运动神经元的促存活作用只是它多种类型神经元营养作用中较弱的一环  相似文献   

11.
Cell adhesion molecules belonging to the immunoglobulin superfamily (IgSF) control synaptic specificity through hetero- or homophilic interactions in different regions of the nervous system. In the developing spinal cord, monosynaptic connections of exquisite specificity form between proprioceptive sensory neurons and motor neurons, however, it is not known whether IgSF molecules participate in regulating this process. To determine whether IgSF molecules influence the establishment of synaptic specificity in sensory-motor circuits, we examined the expression of 157 IgSF genes in the developing dorsal root ganglion (DRG) and spinal cord by in situ hybridization assays. We find that many IgSF genes are expressed by sensory and motor neurons in the mouse developing DRG and spinal cord. For instance, Alcam, Mcam, and Ocam are expressed by a subset of motor neurons in the ventral spinal cord. Further analyses show that Ocam is expressed by obturator but not quadriceps motor neurons, suggesting that Ocam may regulate sensory-motor specificity in these sensory-motor reflex arcs. Electrophysiological analysis shows no obvious defects in synaptic specificity of monosynaptic sensory-motor connections involving obturator and quadriceps motor neurons in Ocam mutant mice. Since a subset of Ocam+ motor neurons also express Alcam, Alcam or other functionally redundant IgSF molecules may compensate for Ocam in controlling sensory-motor specificity. Taken together, these results reveal that IgSF molecules are broadly expressed by sensory and motor neurons during development, and that Ocam and other IgSF molecules may have redundant functions in controlling the specificity of sensory-motor circuits.  相似文献   

12.
The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are important for the regulation of survival and differentiation of distinct, largely non-overlapping populations of embryonic sensory neurons. We show here that the multifunctional cytokine transforming growth factor-β (TGF-β) fails to maintain sensory neurons cultured from embryonic day (E) 8 chick dorsal root ganglia (DRG), although DRG neurons are immunoreactive for the TGF-β receptor type II, which is essential for TGF-β signaling. However, in combination with various concentrations of NT-3 and NT-4, but not NGF, TGF-β3 causes a further significant increase in neuron survival. In DRG cell cultures treated with NGF, NT-3, and NT-4, a neutralizing antibody to TGF-β decreases neuron survival suggesting that endogenous TGF-β in these cultures affects the efficacies of neurotrophins. Consistent with this notion and a modulatory role of TGF-β in neurotrophin functions is the observation that TGF-β2 and-β3 immunoreactivities and TGF-β3 mRNA are located in embryonic chick DRG in close association with neurons from E5 onwards. We also show that leukemia inhibitory factor (LIF) significantly decreases NGF-mediated DRG neuron survival. Together, these data indicate that actions and efficacies of neurotrophins are under distinct control by TGF-β and LIF in vitro, and possibly also in vivo. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

13.
Chick embryos and posthatched chicks were examined at several ages for the presence of pyknotic interneurons in the lumbar spinal cord. Because no pyknotic interneurons were found, direct cell counts of healthy interneurons were carried out and a comparison made between early- and late-stage embryos and hatchlings. There was no decrease in the number of interneurons in the ventral intermediate gray matter of the spinal cord between embryonic day (E) 8 and 2 weeks posthatching (PH) or in the dorsal horn between E10 and 2 weeks PH. To study whether interneuron survival is regulated by targets or afferents, a situation known to exist in other developing neural populations, early embryos were subjected to (1) removal of one limb, resulting in the loss of lateral motor column motoneurons and dorsal root ganglion sensory afferents; (2) transection of the thoracic spinal cord, thereby removing both descending afferents and rostral targets of spinal interneurons, or (3) a combination of the two operations. No reductions in interneuron numbers were found as a result of these operations. Furthermore, morphometric analysis also revealed no change in neuronal size following these experimental manipulations. By contrast, there was a slight decrease in the total area of spinal gray matter that was most prominent in the dorsal region following limb bud removal. Our results indicate (1) that spinal interneurons fail to exhibit the massive naturally occurring death of postmitotic neurons that has been observed for several other populations of spinal neurons, and (2) spinal interneurons appear to be relatively resistant to induced cell death following the removal of substantial numbers of afferent inputs and targets.  相似文献   

14.
15.
Neurotrophin-3 plays an important role in survival and differentiation of sensory and sympathetic neurons, sprouting of neurites, synaptic reorganization, and axonal growth. The present study evaluated changes in expression of NT-3 in the spinal cord and L6 dorsal root ganglion (DRG), after ganglionectomy of adjacent dorsal roots in cats. NT-3 immunoreactivity increased at 3 days post-operation (dpo), but decreased at 10 dpo in spinal lamina II after ganglionectomy of L1–L5 and L7–S2 (leaving L6 DRG intact). Conversely, NT-3 immunoreactivity decreased on 3 dpo, but increased on 10 dpo in the nucleus dorsalis. Very little NT-3 mRNA signal was detected in the spinal cord, despite the changes in NT-3 expression. The above changes may be related to changes in NT-3 expression in the DRG. Ganglionectomy of L1–L5 and L7–S2 resulted in increase in NT-3 immunoreactivity and mRNA in small and medium-sized neurons, but decreased expression in large neurons of L6 DRG at 3 dpo. It is possible that increased NT-3 in spinal lamina II is derived from anterograde transport from small- and medium-sized neurons of L6 DRG, whereas decreased NT-3 immunoreactivity in the nucleus dorsalis is due to decreased transport of NT-3 from large neurons in the DRG at this time. This notion is supported by observations on NT-3 distribution in the dorsal root of L6 after ligation of the nerve root. The above results indicate that DRG may be a source of neurotrophic factors such as NT-3 to the spinal cord, and may contribute to plasticity in the spinal cord after injury.  相似文献   

16.
Directed differentiation of embryonic stem cells into motor neurons   总被引:52,自引:0,他引:52  
Wichterle H  Lieberam I  Porter JA  Jessell TM 《Cell》2002,110(3):385-397
  相似文献   

17.
采用PCR的方法对睫状神经营养因子(CNTF)基因进行改造,获得CNTF突变体基因(CNTFM) ,将CNTFM基因克隆入表达载体pBV2 2 0 ,在大肠杆菌BL 2 1(Gold)中进行了表达.目的蛋白占细胞总蛋白5 5 %左右,以包涵体形式存在,经Superdex 75凝胶过滤柱一步纯化和复性,获得纯度达90 %目的蛋白.纯化的重组CNTFM蛋白能促进培养的鸡胚背根神经节长出神经突起,能明显减轻实验小鼠的体重,表明CNTFM具有良好的体内、体外生物学活性,为开发新型高效的减肥药奠定了基础.  相似文献   

18.
Regulation of cholinergic expression in cultured spinal cord neurons   总被引:1,自引:0,他引:1  
Factors regulating development of cholinergic spinal neurons were examined in cultures of dissociated embryonic rat spinal cord. Levels of choline acetyltransferase (CAT) activity in freshly dissociated cells decreased rapidly, remained low for the first week in culture, and then increased. The decrease in enzyme activity was partially prevented by increased cell density or by treatment with spinal cord membranes. CAT activity was also stimulated by treatment with MANS, a molecule solubilized from spinal cord membranes. The effects of MANS were greatest in low-density cultures and in freshly plated cells, suggesting that the molecule may substitute for the effects of elevated density and cell-cell contact. CAT activity in ventral (motor neuron-enriched) spinal cord cultures was similarly regulated by elevated density or treatment with MANS, whereas enzyme activity was largely unchanged in mediodorsal (autonomic neuron-enriched) cultures under these conditions. These observations suggest that development of cholinergic motor neurons and autonomic neurons are not regulated by the same factors. Treatment of ventral spinal cord cultures with MANS did not increase the number of cholinergic neurons detected by immunocytochemistry with a monoclonal CAT antibody, suggesting that MANS did not increase motor neuron survival but rather stimulated levels of CAT activity per neuron. These observations indicate that development of motor neurons can be regulated by cell-cell contact and that the MANS factor may mediate the stimulatory effects of cell-cell contact on cholinergic expression.  相似文献   

19.
LIM homeobox genes have a prominent role in the regulation of neuronal subtype identity and distinguish motor neuron subclasses in the embryonic spinal cord. We have investigated the role of Isl-class LIM homeodomain proteins in motor neuron diversification using mouse genetic methods. All spinal motor neuron subtypes initially express both Isl1 and Isl2, but Isl2 is rapidly downregulated by visceral motor neurons. Mouse embryos lacking Isl2 function exhibit defects in the migration and axonal projections of thoracic level motor neurons that appear to reflect a cell-autonomous switch from visceral to somatic motor neuron character. Additional genetic mutations that reduce or eliminate both Isl1 and Isl2 activity result in more pronounced defects in visceral motor neuron generation and erode somatic motor neuron character. Thus, an early phase of high Isl expression and activity in newly generated motor neurons permits the diversification of visceral and somatic motor neuron subtypes in the developing spinal cord.  相似文献   

20.
梁哲  农艺 《实验生物学报》1997,30(2):173-181
本文以体外培养的小鼠脊髓神经元为模型研究了人胚脊髓提取液对E12-15小鼠脊髓中GABA能神经元和DNY能神经元的突起生长的营养作用,结果发现人胚脊髓提取液在蛋白浓度为250μg/ml时对GABA能神经元的突起生长无营养作用,但对DNY能神经元的突起生长有显著的促进作用。提示了人胚脊髓提取液中有促进神经元突起生长的营养物质,且对特定胎龄的不同的神经元有不同的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号