首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phosphosaccharide-inositol core of the lipophosphoglycan of Leishmania donovani was generated by treatment of the glycoconjugate with mild acid and digestion with phosphatidylinositol-specific phospholipase C. The core was purified and examined by one- and two-dimensional 1H-1H NMR and by methylation analysis. From the results, the carbohydrate core was elucidated as a phosphosaccharide attached to the inositol residue of the lyso-alkylphosphatidylinositol anchor of lipophosphoglycan as follows: PO4----6GalP(alpha 1----6)GalP(alpha 1----3)Galf(alpha 1----3)ManP(alpha 1----3)ManP(alpha 1----4)GlcNP(alpha 1----6)myo-inositol. The presence of an internal galactofuranose residue is highly unusual and the ManP(alpha 1----4)GlcNP(alpha 1----6)myo-inositol sequence is homologous to the respective portion of the glycosylphosphatidylinositol anchors reported for both the Trypanosoma brucei variant surface glycoprotein and the rat brain Thy-1 glycoprotein.  相似文献   

2.
Inositol lipids account for 15% of the total cellular phospholipids of Leishmania donovani promastigotes. Four major inositol lipids were identified and characterized: phosphatidylinositol (PI), phosphatidylinositol phosphate (PI-P), phosphatidylinositol diphosphate (PI-P2), and an inositol sphingophospholipid (InSL). Diacyl and alkyl acyl PI were identified. The major esterified fatty acids of PI, PI-P, and PI-P2 were similar and unlike those of mammalian inositol glycerolipids. Leishmania inositol glycerolipids contained only trace amounts of arachidonic acid; the major species were C16 and C18 acids. The InSL comprised about 40% of the inositol lipids. The amide-linked fatty acids of InSL were mainly C16 and C18 acids. Differential hydrolysis and nuclear magnetic resonance spectrometry indicated that the InSL had a phosphoryl bond. The major long chain bases of the InSL were identified by gas-liquid chromatography and high resolution mass spectrometry as straight chain C16 and C18 sphingosines. The finding of InSL in Leishmania is of interest because InSL have previously been found only in plants and fungi. Metabolic radiolabeling experiments suggest that this lipid may be a precursor of an antigenic cell surface membrane lipophosphoglycan which is shed into the culture medium by the organism.  相似文献   

3.
The glycolipids of the protozoan Leishmania major strain LRC-L119 belong to a class of glycoinositol phospholipids (GIPL) that show partial structural homology to the phosphatidylinositol-containing glycolipid membrane anchors of several eukaryotic proteins and the lipid moiety of L. major lipophosphoglycan. The GIPLs were the only glycolipids detected and were purified by octyl-Sepharose and thin layer chromatographies. Analysis of the native and dephosphorylated glycolipids (GIPLs 1-6) by gas chromatography-mass spectrometry revealed that the glycan moieties have between 4 and 10 saccharide residues and all contain mannose, galactose, and non-N-acetylated glucosamine. Some of the GIPLs also contain glucose (GIPL-6) and hexose monophosphate residues (GIPL 4-6). The presence of an inositol phospholipid moiety in all the GIPLs is indicated by the identification of 1 myo-inositol monophosphate residue/molecule and their susceptibility to phosphatidylinositol-specific phospholipase C. However, heterogeneity in the lipid moieties is indicated by differences in the compositional analysis and the behavior of the GIPLs on the thin layer chromatography after mild alkali hydrolysis or phospholipase A2 treatment. These results demonstrate that GIPLs 1-4 contain 1-alkyl-2-acylglycerol composed of saturated unbranched alkyl chains with carbon chain lengths of 18-26 and acyl chains of myristate, palmitate and stearate, whereas GIPL-5 and -6 contain lyso-alkylglycerol composed of mainly C24:0 and C26:0 alkyl chains. Analysis of the products of nitrous acid deamination demonstrates that these glycerolipids are present as alkylacylphosphatidylinositol (GIPLs 1-4) and 1-O-alkylglycerophosphoinositol (GIPL-5 and -6), respectively. GIPL-2 and -3 are labeled on the surface of living promastigotes with galactose oxidase/NaB[3H]4. These GIPLs also react with three monoclonal antibodies that recognize the surface of promastigotes and amastigotes of L. major and other Leishmania spp.  相似文献   

4.
The major carbohydrate fragment from the lipophosphoglycan of Leishmania donovani was generated by mild acid hydrolysis (0.02 N HCl, 5 min, 100 degrees C) and purified by chromatography on DE-52 cellulose and thin layer. By a combination of analyses including gas-liquid chromatography-mass spectrometry and 1H NMR, the structure of the fragment was elucidated as PO4----6Gal(beta 1----4)Man. Approximately 16 of these phosphorylated disaccharide units occur in the overall glycoconjugate structure. NMR analysis of an alkaline phosphatase treated phosphorylated tetrasaccharide generated from lipophosphoglycan showed that the phosphorylated disaccharide units are linked together via alpha-glycosidic linkages. Complete characterization of the phosphorylated disaccharide units of lipophosphoglycan provides the first example of a defined carbohydrate anchored in membranes by a derivative of phosphatidylinositol.  相似文献   

5.
Incubation of microsomal preparations from Leishmania donovani parasites with UDP-[3H]galactose or GDP-[14C]mannose resulted in incorporation of radiolabel into an endogenous product that exhibited the chemical and chromatographic characteristics of the parasite's major surface glycoconjugate, lipophosphoglycan. The [3H]galactose- or [14C]mannose-labeled product was (i) cleaved by phosphatidylinositol-specific phospholipase C; (ii) deaminated by nitrous acid; and (iii) degraded into radioactive, low molecular weight fragments upon hydrolysis with mild acid. Analysis of the products of mild acid hydrolysis revealed the presence of phosphorylated Gal-beta-Man as the major fragment with lesser amounts of mono-, tri-, and tetrasaccharides. The incorporation of the two isotopic precursors was neither stimulated by the addition of dolichylphosphate nor inhibited by amphomycin, indicating that dolichol-saccharide intermediates are not involved in assembly of the repeating units of lipophosphoglycan. Development of this cell-free glycosylating system will facilitate further studies on the pathway and enzymes involved in lipophosphoglycan biosynthesis.  相似文献   

6.
Lipophosphoglycan (LPG) was isolated from the culture supernatant of Leishmania mexicana promastigotes and its structure elucidated by a combination of 1H NMR, fast atom bombardment mass spectrometry, methylation analysis, and chemical and enzymatic modifications. It consists of the repeating phosphorylated oligosaccharides PO4-6Gal beta 1-4Man alpha 1- and PO4-6[Glc beta 1-3]Gal beta 1-4Man alpha 1-, which are linked together in linear chains by phosphodiester linkages. Each chain of repeat units is linked to a phosphosaccharide core with the structure PO4-6Gal alpha 1-6Gal alpha 1-3Galf beta 1- 3[Glc alpha 1-PO4-6]Man alpha 1-3Man alpha 1-4GlcNH2 alpha 1-6 myo-inositol, where the myo-inositol residue forms the head group of a lyso-alkylphosphatidylinositol moiety. The nonreducing terminus of the repeat chains appear to be capped with the neutral oligosaccharides Man alpha 1-2Man, Man alpha 1-2Man alpha 1-2Man, or Man alpha 1-2[Gal beta 1-4]Man. Cellular LPG, isolated from promastigotes, has a very similar structure to the culture supernatant LPG. However, it differs from culture supernatant LPG in the average number of phosphorylated oligosaccharide repeat units (20 versus 28) and in alkyl chain composition. Although culture supernatant LPG contained predominantly C24:0 alkyl chains, cellular LPG contained approximately equal amounts of C24:0 and C26:0 alkyl chains. It is suggested that culture supernatant LPG is passively shed from promastigotes and that it may contribute significantly, but not exclusively, to the "excreted factor" used for serotyping Leishmania spp. Comparison of L. mexicana LPG with the LPGs of Leishmania major and Leishmania donovani indicate that these molecules are highly conserved but that species-specific differences occur in the phosphorylated oligosaccharide repeat branches and in the relative abundance of the neutral cap structures.  相似文献   

7.
This study identifies and partially characterizes an insulin-sensitive glycophospholipid in H35 hepatoma cells. The incorporation of [3H]glucosamine into cell lipids was investigated. A major labeled lipid was purified by sequential thin layer chromatography using first an acid followed by a basic solvent system. After hydrochloric acid hydrolysis and sugar analysis by thin layer chromatography, 80% of the radioactivity in the purified lipid was found to comigrate with glucosamine. H35 cells were prelabeled with [3H]glucosamine for either 4 or 24 h and treated with insulin causing a dose-dependent stimulation of turnover of the glycophospholipid which was detected within 1 min. The purified glycolipid was cleaved by nitrous acid deamination indicating that the glucosamine C-1 was linked to the lipid moiety through a glycosidic bond. [14C]Ethanolamine, [3H]inositol, and [3H]sorbitol were not incorporated into the purified glycolipid. The incorporation of various fatty acids into this glycolipid was also studied. [3H]Palmitate was found to be preferentially incorporated while myristic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid were either not incorporated or incorporated less than 10% of palmitate. The purified glycolipid labeled with [3H]palmitate was cleaved by treatment with phospholipase A2 but was resistant to mild alkali hydrolysis suggesting the presence of a 1-hexadecyl,2-palmitoyl-glyceryl moiety in the purified lipid. Treatment of labeled glycophospholipid with phosphatidylinositol-specific phospholipase C from Staphylococcus aureus generated a compound migrating as 1-alkyl,2-acyl-glycerol and a polar head group with a size in the range from 800 to 3500. These findings coupled with the nitrous acid deamination demonstrate that glucosamine was covalently linked through a phosphodiester bond to the glyceryl moiety of the purified glycolipid. These findings suggest that insulin acts on this glycophospholipid by stimulating an insulin-sensitive phospholipase C. This unique glycophospholipid may play an important role in insulin action by serving as precursor of insulin-generated mediators.  相似文献   

8.
The lipophosphoglycan (LPG) of the intracellular amastigote form of the protozoan parasite Leishmania major is chemically distinct from the LPG on the surface of the extracellular promastigote form. Amastigote LPG is composed of the monosaccharides galactose, glucose, mannose, glucosamine and inositol in the molar ratio 51:30:24:1:1; arabinose is absent. The lipid anchor comprises four alkylglycerols, with alkyl chain lengths 24:0, 22:0, 20:0 and 26:0 in the molar ratio 68:18:8:6. Phosphate is present at 4% w/w of total carbohydrate. HPLC gel permeation reveals LPG to be a polydisperse family of molecules Mr 100-6 kDa. The results from immunological studies with LPG-directed antibodies are consistent with amastigote LPG having the expected tripartite structure of GPI-anchor, a core glycan and the phosphorylated disaccharide repeat backbone. Human sera from L. major patients bound amastigote LPG in enzyme-linked immunosorbent assays.  相似文献   

9.
Structures of the major glycolipids isolated from the protozoan parasite Leishmania major (strains V121 and LRC-L119), were elucidated by fast atom bombardment-mass spectrometry, two-dimensional proton NMR, methylation analysis, exoglycosidase digestions and mild acid hydrolysis. These glycolipids belong to a family of glycoinositolphospholipids (GIPLs), which contain 4-6 saccharide residues linked to alkylacylphosphatidylinositol (alkylacyl-PI) or lyso alkyl-PI. The general structure of the elucidated GIPLs can be expressed as follows: R-3Galf(alpha 1-3)Manp(alpha 1-3)Manp(alpha 1-4)GlcNp(alpha 1-6) alkylacyl-PI or lyso alkyl-PI where R = OH for GIPL-1; R = Galp(alpha 1- for GIPL-2; R = Galp(alpha 1-6)Galp (alpha 1- for GIPL-3 and R = Galp(alpha 1-3)Galf(alpha 1- for GIPL-A. The alkylacyl-PI lipid moieties are unusual in containing predominantly 18:0, 22:0, 24:0, or 26:0 alkyl chains and 12:0, 14:0, or 16:0 acyl chains. Remodeling of the lipid moieties may occur based on the finding that 1) lyso derivatives account for approximately 35% of the GIPL-3 fraction in strain V121 and 2) there is an increase in the proportion of 24:0 and 26:0 alkyl chains with elongation of the carbohydrate chain. Together with the elucidated structures, these properties are consistent with some of the GIPLs having a role as biosynthetic precursors to the major cell surface glycoconjugate, lipophosphoglycan. In particular, the saccharide sequences of GIPL-3, lyso-GIPL-3, and the glycan core of lipophosphoglycan (Turco, S. J., Orlandi, P. A., Homans, S. W., Ferguson, M. A. J., Dwek, R. A., and Rademacher, T. W. (1989) J. Biol. Chem. 264, 6711-6715) are identical. Finally, immunostaining of thin layer chromatograms with antibodies from patients with cutaneous leishmaniasis suggests that the major GIPLs are highly immunogenic and that the elevated anti-Gal antibodies, commonly seen in leishmaniasis patients, may be directed against terminal Galp(alpha 1-3)Galf residues.  相似文献   

10.
Structure of the lipophosphoglycan from Leishmania major   总被引:10,自引:0,他引:10  
The major cell surface glycoconjugate of the parasitic protozoan Leishmania major is a heterogeneous lipophosphoglycan. It has a tripartite structure, consisting of a phosphoglycan (Mr 5,000-40,000), a variably phosphorylated hexasaccharide glycan core, and a lysoalkylphosphatidylinositol (lysoalkyl-PI) lipid anchor. The structures of the phosphoglycan and the hexasaccharide core were determined by monosaccharide analysis, methylation analysis, fast atom bombardment-mass spectrometry, one- and two-dimensional 500-MHz (correlated spectroscopy (COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA] 1H NMR spectroscopy, and exoglycosidase digestions. The phosphoglycan consists of eight types of phosphorylated oligosaccharide repeats which have the general structure, [formula: see text] where R = H, Galp(beta 1-3), Galp(beta 1-3)Galp(beta 1-3), Arap(alpha 1-2)Galp(beta 1-3), Glcp(beta 1-3)Galp(beta 1-3), Galp(beta 1-3)Galp(beta 1-3)Galp(beta 1-3), Arap(alpha 1-2)Galp(beta 1-3)Galp(beta 1-3), or Arap(alpha 1-2)Galp(beta 1-3)Galp(beta 1-3)Galp(beta 1-3)Galp(beta 1-3), and where all the monosaccharides, including arabinose, are in the D-configuration. The average number of repeat units/molecule (n) is 27. Data are presented which suggest that the nonreducing terminus of the phosphoglycan is capped exclusively with the neutral disaccharide Manp(alpha 1-2)Manp alpha 1-. The structure of the glycan core was determined to be, [formula: see text] where approximately 60% of the mannose residues distal to the glucosamine are phosphorylated and where the inositol is part of the lysoalkyl-PI lipid moiety containing predominantly 24:0 and 26:0 alkyl chains. The unusual galactofuranose residue is in the beta-configuration, correcting a previous report where this residue was identified as alpha Galf. Although most of the phosphorylated repeat units are attached to the terminal galactose 6-phosphate of the core to form a linear lipophosphoglycan (LPG) molecule, some of the mannose 6-phosphate residues may also be substituted to form a Y-shaped molecule. The L. major LPG is more complex than the previously characterized LPG from Leishmania donovani, although both LPGs have the same repeating backbone structure and glycolipid anchor. Finally we show that the LPG anchor is structurally related to the major glycolipid species of L. major, indicating that some of these glycolipids may have a function as precursors to LPG.  相似文献   

11.
Purified lipophosphoglycan from Leishmania donovani was found to inhibit the activity of protein kinase C isolated from rat brain. Protein kinase C inhibition by lipophosphoglycan was continuous for 30 minutes. The glycoconjugate was a competitive inhibitor with respect to diolein, a noncompetitive inhibitor with respect to phosphatidylserine, and had no significant effect on protein kinase M and protein kinase A. A possible physiological role of lipophosphoglycan as a negative effector of protein kinase C is suggested.  相似文献   

12.
Glycosyl phosphatidylinositol lipids of cultured L.mex, mexicana LV732 promastigotes, T. cruzi Peru epimastigotes and Tritrichomonas foetus have been isolated and characterized using metabolic labelling and chromatographic and mass spectrometric (MS) techniques. TLC of the unsaponifiable lipid fractions of L. mex. mexicana and T. cruzi obtained from DEAE Sephadex A-25 followed by Iatrobead column chromatography showed three inositol phosphate-containing lipid components. [3H]myo-inositol, [3H]palmitic acid or H3 32PO4 lipid precursors were incorporated into these three lipid components. Fraction 2 (LM2 and TCP-2) comprises inositol phosphate ceramides. The other two fractions appear to contain mono-O-alkyl and di-O-alkyl glycerol inositol phosphates. Lyso-1-O-alkyl phosphatidylinositols could be cleaved by treatment of PI-specific phosphalipase C. The di-O-alkyl-phospho inositols of these parasites being the first dialkylglycerol lipids reported from eukaryotic membranes raises the possibility of chemotherapy for leishmaniasis and trypanosomiasis based upon functional impairment of alkyl ether lipids. Tritrichomonas foetus contains two major glycophosphosphingolipids, designated TF1 and TF2, which are metabolically labelled with [3H]myo-inositol and H3 32PO4. Both lipids contained ceramides. The major ceramide contains the 18:0 and 18:1 bases and 16:0 N-acyl group. The major glycolipid fraction (TF1) contains fucose linked to inositol diphosphate; one of the phosphates being linked to the ceramide moiety, and the other to ethanolamine. TF1 appears to be a novel class of glycophosphosphingolipid, which may be a part of a membrane anchor.  相似文献   

13.
The structure of the membrane anchor of three Leishmania major surface antigenic glycolipids was analyzed. Phosphatidylinositol-specific phospholipase C treatment and nitrous acid deamination indicated the presence of a phosphatidylinositol anchor linked to the glycan through a non-N-acetylated hexosamine. An ester linkage on the C-2 of glycerol was revealed by phospholipase A2 hydrolysis. This fatty acyl substitution was not found on the phosphatidylinositol anchor of the Leishmania lipophosphoglycan.  相似文献   

14.
The structure of a major ether polar lipid of the methanogenic archaeon Methanosarcina barkeri was identified as glucosaminyl archaetidylinositol. This lipid had archaeol (2,3-di-O-phytanyl-sn-glycerol) as a core lipid portion, and the polar head group consisted of 1 mol each of phosphate, myo-inositol and D-GlcN. The polar head group was identified by means of chemical degradations, phosphatidylinositol-specific phospholipase C treatment, permethylation analysis, and fast atom bombardment-mass spectrometry as glucosaminylinositol phosphate, which was linked to the glycerol backbone via a phosphodiester bond. The stereochemical configuration of the phospho-myo-inositol residue of glucosaminyl archaetidylinositol was determined to be 1-D-myo-inositol 1-phosphate by measuring optical rotation of phospho-myo-inositol prepared by nitrous acid deamination and alkaline hydrolysis from the lipid. 1H NMR of the intact lipid showed that GlcN was linked to C-6 position of myo-inositol as an alpha-anomer. It is, finally, concluded that the complete structure of this lipid is 2,3-di-O-phytanyl-sn-glycero-1-phospho- 1'[6'-O-(2"-amino-2"-deoxy-alpha-D-glucopyranosyl)]-1'-D-myo-inositol. This lipid has a hybrid nature of an archaeal feature in alkyl glycerol diether core portion and an eucaryal feature in the polar head group identical to the conserved core structure (GlcNp(alpha 1-6)-myo-inositol 1-phosphate) of glycosylated phosphatidylinositol which serves as a membrane protein anchor in eucaryal cells.  相似文献   

15.
Galactomannan is a characteristic polysaccharide of the human filamentous fungal pathogen Aspergillus fumigatus that can be used to diagnose invasive aspergillosis. In this study, we report the isolation of a galactomannan fraction associated to membrane preparations from A. fumigatus mycelium by a lipid anchor. Specific chemical and enzymatic degradations and mass spectrometry analysis showed that the lipid anchor is a glycosylphosphatidylinositol (GPI). The lipid part is an inositol phosphoceramide containing mainly C18-phytosphingosine and monohydroxylated lignoceric acid (2OH-C(24:0) fatty acid). GPI glycan is a tetramannose structure linked to a glucosamine residue: Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4GlcN. The galactomannan polymer is linked to the GPI structure through the mannan chain. The GPI structure is a type 1, closely related to the one previously described for the GPI-anchored proteins of A. fumigatus. This is the first time that a fungal polysaccharide is shown to be GPI-anchored.  相似文献   

16.
Fragments of the lipophosphoglycan of Leishmania donovani were generated by phospholipase C digestion and mild acid hydrolysis. The fragments were purified and examined for inhibitory activity on protein kinase C isolated from rat brains. On a molar basis, the 1-O-alkylglycerol portion of LPG exhibited the most inhibitory activity, whereas the carbohydrate domain was not as effective. In addition, several glycolipid antigens from L. major, which contain short carbohydrate chains attached to phosphatidylinositol, were also efficient inhibitors of the enzyme. These results are consistent with the hypothesis that protein kinase C may be a key target for the parasites to overcome within host macrophages.  相似文献   

17.
The lipopeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi is composed of a glycan linked through a non-N-acetylated glucosamine residue to an inositol phosphorylceramide. Using conventional analysis techniques, including 1H, 13C, and 31P NMR spectroscopy and negative ion fast atom bombardment mass spectroscopy, the structure of the carbohydrate-containing part of the molecule is determined as: (Sequence: see text). There is uncertainty as to which 2-O-substituted alpha-D-Manp unit is attached the side chain or whether it is distributed between the two units. Some of the structures lack the Galf side chain. The inositol unit is linked to ceramide via a phosphodiester bridge. The major aliphatic components of the ceramide portion were lignoceric acid and sphinganine.  相似文献   

18.
Several mammalian mutant cell lines are deficient in the biosynthesis of glycophosphatidylinositol anchors for membrane proteins. When metabolically labeled with [3H]myo-inositol or [3H]mannose, two out of five mutant lines (SIA-b and EL4-f) accumulated abnormal lipids which remained undetectable in the corresponding parental cell lines. The most abundant glycolipid of SIA-b cells (named lipid X) was isolated and partially characterized using hydrofluoric acid, nitrous acid deamination, acetolysis, and exoglycosidase treatments alone or in combination. The partial structure for the carbohydrate moiety of lipid X is Man alpha-(X----)Man alpha-GlcN-inositol, X being a charged, HF-sensitive substituent (possibly phosphoethanolamine). Lipid X is largely resistant to phosphatidylinositol-specific phospholipase C treatment but can be rendered sensitive to the enzyme by treatment with methanolic NH3, which suggests the presence of an acyl chain on the inositol moiety. The lipid moieties of lipid X are heterogenous in that about 50% of headgroups remain bound to a lipid moiety after mild alkaline hydrolysis. Similarly, about 50% of the lipid moieties of Thy-1, a glycophosphatidylinositol-anchored surface glycoprotein, isolated from SIA, the parent of SIA-b cells or from EL4 lymphoma cells, are resistant to mild alkaline hydrolysis. Altogether the data suggest that the SIA-b mutant line lacks an enzyme acting late in the anchor glycolipid biosynthesis pathway.  相似文献   

19.
The primary structure of the major surface glycoconjugate of Leishmania donovani parasites, a lipophosphoglycan, has been further characterized. The repeating PO4-6Galp beta 1-4Man disaccharide units, which are a salient feature of the molecule, are shown to terminate with one of several neutral structures, the most abundant of which is the branched trisaccharide Galp beta 1-4(Manp alpha 1-2)Man. The phosphosaccharide core of lipophosphoglycan, which links the disaccharide repeats to a lipid anchor, contains 2 phosphate residues. One of the core phosphates has previously been localized on O-6 of the galactosyl residue distal to the lipid anchor; the second phosphate is now shown to be on O-6 of the mannosyl residue distal to the anchor and to bear an alpha-linked glucopyranosyl residue. Also, the anomeric configuration of the unusual 3-substituted Galf residue in the phosphosaccharide core is established as beta. The complete structure of the core is thus PO4-6Galp alpha 1-6Galp alpha 1-3Galf beta 1-3[Glcp alpha 1-PO4-6]Manp alpha 1-3Manp alpha 1-4GlcN alpha 1-. This further clarification of the structure of lipophosphoglycan may prove beneficial in determining the structure-function relationships of this highly unusual glycoconjugate.  相似文献   

20.
In this study, we demonstrated that the protozoan parasite Leishmania donovani and one of its major surface molecules, the lipophosphoglycan (LPG), can induce human immunodeficiency virus type 1 (HIV-1) expression in U1 and OM-10.1, two cell lines of monocytoid origin latently infected with HIV-1. Treatment of U1 cells with various concentrations of LPG (1, 5, and 10 microM) resulted in a dose-dependent secretion of tumor necrosis factor alpha (TNF-alpha). Suppression of LPG-induced HIV-1 expression by polyclonal anti-TNF-alpha antibodies further confirmed the involvement of this cytokine. Results from these studies indicate that the protozoan parasite L. donovani can induce the secretion of TNF-alpha that will function in an autocrine or paracrine manner to upregulate HIV-1 expression. Our data suggest for the first time that this protozoan parasite can be viewed as a potential cofactor in the pathogenesis of AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号