首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sirois JC  Miller RW 《Plant physiology》1972,49(6):1012-1018
The naturally occurring coumarin, scopoletin, has been found to modify horseradish peroxidase rapidly to give a stable, spectroscopically distinguishable form of the enzyme. Peroxidase treated with scopoletin is less active in reactions with molecular oxygen and indole-3-acetic acid. Kinetic data for the degradation of this growth regulator were obtained with a continuously monitored fluorometric procedure. Lineweaver-Burk plots of the reciprocal rate of degradation against the reciprocal substrate concentration were markedly curved in the presence of the inhibitor, scopoletin. Excess indole-3-acetate restored the scopoletin-treated enzyme to a reactive state. In the presence of molecular oxygen, concentrations of indole-3-acetic acid which were at least 10-fold greater than the inhibitor concentration led to the rapid oxidation of the coumarin and converted peroxidase to compound III as expected from previous studies. This form of the enzyme is the catalytically active species in the oxidative degradation of the growth regulator. The kinetically preferential reaction of scopoletin or related coumarins with peroxidase and the suppression of indole-3-acetic acid degradation may provide a possible control mechanism over the oxidative degradation of indole-3-acetate by this plant enzyme.  相似文献   

2.
Kinetic and spectral data establish that peroxidase may oxidize indole-3-acetic acid by either of two pathways depending on the enzyme/substrate ratio. When relatively low enzyme/substrate ratios are employed, the oxidation proceeds through a reduced peroxidase in equilibrium compound III shuttle. Conversely, peroxidase operates through the conventionally accepted pathway involving native enzyme and compounds I and II only when high enzyme/substrate ratios are used. Compound III, a specific oxidase, constitutes the dominant steady-state form of peroxidase when the reduced peroxidase in equilibrium compound III shuttle is operational. Activation of this shuttle also produces a flux of superoxide anion radical at the expense of molecular oxygen. Thus, important biological consequences may follow activation of this shuttle under physiological conditions.  相似文献   

3.
The oxidation of indole-3-acetic acid (IAA) catalyzed by horseradish peroxidase (HRP) in the absence of added H2O2 was studied at pH 7.4 using spectral and kinetic approaches. Upon addition of a hundred-fold excess of IAA to HRP the native enzyme was rapidly transformed to compound II (HRP-II). HRP-II was the predominant catalytic enzyme species during the steady state. No compound III was observed. HRP-II was slowly transformed to the stable inactive verdohemo-protein, P-670. A precursor of P-670, so-called P-940 was not detected. After the cessation of IAA oxidation there was neither oxygen consumption nor P-670 formation; the remaining HRP-II was spontaneously reduced to native enzyme. Single exponential kinetics were observed in the steady state for IAA oxidation, oxygen consumption and P-670 formation yielding identical first order rate constants of about 6 . 10(4) s(-1). A comparison of the rate of IAA oxidation by HRP-II in the steady state and in the transient state indicated that more than 1 3 of the IAA was oxidized non-enzymatically during the steady state, confirming that a free radical chain reaction is involved in the peroxidase-catalyzed oxidation of IAA. IAA oxidation stopped before IAA was completely consumed, which cannot be ascribed to enzyme inactivation because 30-50% of the enzyme was still active after the end of the reaction. Instead, incomplete IAA oxidation is explained in terms of termination of the free radical chain reaction. Bimolecular rate constants of IAA oxidation by HRP-I and HRP-II determined under transient state conditions were (2.2 +/- 0.1) x 10(3) M(-1) s(-1) and (2.3 +/- 0.2) x 10(2) M(-1) s(-1).  相似文献   

4.
Myeloperoxidase (MPO), which is involved in host defence and inflammation, is a unique peroxidase in having a globin-like standard reduction potential of the ferric/ferrous couple. Intravacuolar and exogenous MPO released from stimulated neutrophils has been shown to exist in the oxyferrous form, called compound III. To investigate the reactivity of ferrous MPO with molecular oxygen, a stopped-flow kinetic analysis was performed. In the absence of dioxygen, ferrous MPO decays to ferric MPO (0.04 s(-1) at pH 8 versus 1.4 s(-1) at pH 5). At pH 7.0 and 25 degrees C, compound III formation (i.e., binding of dioxygen to ferrous MPO) occurs with a rate constant of (1.1+/-0.1) x 10(4)M(-1)s(-1). The rate doubles at pH 5.0 and oxygen binding is reversible. At pH 7.0, the dissociation equilibrium constant of the oxyferrous form is (173+/-12)microM. The rate constant of dioxygen dissociation from compound III is much higher than conversion of compound III to ferric MPO (which is not affected by the oxygen concentration). This allows an efficient transition of compound III to redox intermediates which actually participate in the peroxidase or halogenation cycle of MPO.  相似文献   

5.
Catalase is a highly conserved heme-containing antioxidant enzyme known for its ability to degrade hydrogen peroxide into water and oxygen. In low concentrations of hydrogen peroxide, the enzyme also exhibits peroxidase activity. We report that mammalian catalase also possesses oxidase activity. This activity, which is detected in purified catalases, cell lysates, and intact cells, requires oxygen and utilizes electron donor substrates in the absence of hydrogen peroxide or any added cofactors. Using purified bovine catalase and 10-acetyl-3,7-dihydroxyphenoxazine as the substrate, the oxidase activity was found to be temperature-dependent and displays a pH optimum of 7-9. The Km for the substrate is 2.4 x 10(-4) m, and Vmax is 4.7 x 10(-5) m/s. Endogenous substrates, including the tryptophan precursor indole, the neurotransmitter precursor beta-phenylethylamine, and a variety of peroxidase and laccase substrates, as well as carcinogenic benzidines, were found to be oxidized by catalase or to inhibit this activity. Several dietary plant micronutrients that inhibit carcinogenesis, including indole-3-carbinol, indole-3-carboxaldehyde, ferulic acid, vanillic acid, and epigallocatechin-3-gallate, were effective inhibitors of the activity of catalase oxidase. Difference spectroscopy revealed that catalase oxidase/substrate interactions involve the heme-iron; the resulting spectra show time-dependent decreases in the ferric heme of the enzyme with corresponding increases in the formation of an oxyferryl intermediate, potentially reflecting a compound II-like intermediate. These data suggest a mechanism of oxidase activity involving the formation of an oxygen-bound, substrate-facilitated reductive intermediate. Our results describe a novel function for catalase potentially important in metabolism of endogenous substrates and in the action of carcinogens and chemopreventative agents.  相似文献   

6.
The formation and decay of intermediate compounds of horseradish peroxidase, lactoperoxidase, and myeloperoxidase formed in the presence of the superoxide/hydrogen peroxide-generating xanthine/xanthine oxidase system has been studied by observation of spectral changes in both the Soret and visible spectral regions and both on millisecond and second time scales. It is tentatively concluded that in all cases compound III is formed in a two-step reaction of native enzyme with superoxide. The presence of superoxide dismutase completely inhibited compound III formation; the presence of catalase had no effect on the process. Spectral data which indicate differences in the decay of horseradish peroxidase compound III back to the native state in comparison with compounds III of lactoperoxidase and myeloperoxidase are also presented.  相似文献   

7.
The present study characterizes the serial reactions of H2O2 with compounds I and II of lignin peroxidase isozyme H1. These two reactions constitute part of the pathway leading to formation of the oxy complex (compound III) from the ferric enzyme. Compounds II and III are the only complexes observed; no compound III* is observed. Compound III* is proposed to be an adduct of compound III with H2O2, formed from the complexation of compound III with H2O2 (Wariishi, H., and Gold, M. H. (1990) J. Biol. Chem. 265, 2070-2077). We provide evidence that demonstrates that the spectral data, on which the formation of compound III* is based, are merely an artifact caused by enzyme instability and, therefore, rule out the existence of compound III*. The reactions of compounds II and III with H2O2 are pH-dependent, similar to that observed for reactions of compounds I and II with the reducing substrate veratryl alcohol. The spontaneous decay of the compound III of lignin peroxidase results in the reduction of ferric cytochrome c. The reduction is inhibited by superoxide dismutase, indicating that superoxide is released during the decay. Therefore, the lignin peroxidase compound III decays to the ferric enzyme through the dissociation of superoxide. This mechanism is identical with that observed with oxymyoglobin and oxyhemoglobin but different from that for horseradish peroxidase. Compound III is capable of reacting with small molecules, such as tetranitromethane (a superoxide scavenger) and fluoride (a ligand for the ferric enzyme), resulting in ferric enzyme and fluoride complex formation, respectively.  相似文献   

8.
Recent investigations in this laboratory on the mechanism of action of liver microsomal cytochrome P-450 (P-450 LM) and its interaction with other components of the hydroxylation system are presented. Two electrophoretically homogeneous forms of the cytochrome, phenobarbital-inducible P-450 LM2 and 5,6-benzoflavone-inducible P-450 LM4, so designated according to their relative electrophoretic mobilities, were used in these studies. Phosphatidylcholine is required in the reconstituted enzyme system for rapid electron transfer from NADPH to P-450 LM, catalyzed by NADPH-cytochrome P-450 reductase, as well as for maximal hydroxylation activity with either molecular oxygen or a peroxy compound serving as oxygen donor to the substrate. The phospholipid facilitates the binding of both substrate and reductase to P-450 LM and apparently causes a structural change in the cytochrome as shown by an increase in alpha-helical content, determined by circular dichroic spectrometry. P-450LM3 and LM4 are one-electron acceptors under anaerobic conditions, in accord with previous potentiometric titrations and product yield data, but in disagreement with previous titrations with reducing agents. The cause for the discrepancy between the present and earlier results is not yet fully understood. Stopped flow spectrophotometry was employed to detect intermediates in the reaction of peroxy compounds with P-450LM2. With m-chloroperbenzoic acid the intermediate formed has absorption maxima at 375, 425, and 540 nm in the absolute spectrum and at 370, 436, and 540 nm in the difference spectrum (intermediate minus oxidized form). A study of the magnitude of the spectral change at various peracid concentrations indicated that with this oxidant the reaction shows a dependence resembling a binding curve. These and other experiments with various oxidants, including cumente hydroperoxide, suggest a reversible two-step mechanism according to the reaction: P-450 LM + oxidant equilibrium C equilibrium D, where C may be an enzyme-oxidant complex and D is a spectral intermediate of unknown structure. A scheme is proposed for the mechanism of action of P-450 LM based on these and earlier studies, including evidence from deuterium isotope experiments for the formation of a substrate carbon radical prior to oxygen transfer.  相似文献   

9.
Ethylene and its analogues acetylene, carbon monoxide, and propylene inhibited the rate of oxidation of indole-3-acetic acid by peroxidase. Annulment of this effect by addition of superoxide dismutase showed that inhibition occurred only in the presence of the superoxide anion radical (O2-.). Kinetic and spectral data established that ethylene and its analogues enhanced markedly the rate of reaction of O2-. with peroxidase. This reaction resulted in the formation of compound III, an oxy-ferrous complex of peroxidase. In the presence of indole-3-acetic acid, the interaction between ethylene, peroxidase, and O2-. activated the reduced peroxidase in equilibrium compound III shuttle. O2-. is a major product of this shuttle, and compound III constitutes the dominant steady-state form of peroxidase. These interactions may help to explain the mechanism of action of ethylene as a plant growth regulator.  相似文献   

10.
Pig fecal slurries converted added L-tryptophan either to indole without detectable intermediates or to 3-methylindole (skatole) via indole-3-acetate. The initial rate of production of 3-methylindole was greatest at pH 6.5 and less at pH 5.0 and 8.0; the initial rates of indole production were similar at pH 6.5 and 8.0. More than 80% of the tryptophan added was converted to 3-methylindole at pH 5.0; at pH 8.0 85% was converted to indole. Both pathways had similar Km values for tryptophan and similar maximum rates. Indole-3-carbinol and indole-3-acetonitrile completely inhibited the production of 3-methylindole from indole-3-acetate but had no effect on the reactions involving L-tryptophan.  相似文献   

11.
We studied stationary kinetics of ascorbic acid oxidation in the presence of indole-3-acetic acid catalyzed by horseradish peroxidase. The catalytic (kcat and Km) and inhibition (Ki) constants were determined for pH from 4.5 to 7.0. The auxin proved to competitively inhibit the enzyme when a single ascorbic acid molecule is bound, while a non-competitive inhibition by IAA is observed for peroxidase oxidation of two or more substrate molecules. A mechanism of ascorbic acid oxidation in the presence of indole-3-acetic acid is proposed.  相似文献   

12.
During oxidation of indole-3-acetic acid catalyzed by horseradish peroxidase, indole-3-aldehyde and 3-hydroxymethayloxindole cease to be produced a few minutes after initiation of the reaction even though IAA is still being consumed. At the same time an increased accumulation of indole-3-methanol is observed and the ratio of oxygen to indole-3-acetic acid consumed becomes less than unity. Indole-3-niethanol can be a substrate for horseradish peroxidase provided that H2O2 is present. In this reaction, indole-3-aldehyde but not 3-hydroxymethyloxindole is formed. H2O2 is not merely an activating agent for the enzyme but also a true oxidant because it is consumed stoichiometrically (1 mol of H2O2 per mol of indole-3-methanol) and the reaction is independent of the presence of oxygen. Indole-3-methanol is proposed as an intermediate in the process of oxidation of indole-3-acetic acid into indole-3-al-denyde, the second step of which requires peroxide as an oxidant.  相似文献   

13.
1. The mechanism of reoxidation of reduced benzylamine oxidase has been investigated at different pH between 6 and 10 by steady-state and transient-state kinetic methods. 2. The reoxidation process involves minimally a second-order interaction between reduced enzyme and oxygen leading to the formation of a spectrally modified enzyme intermediate, and a subsequent first-order step converting this intermediate into free enzyme. The variation with pH of rate constants according to such a reaction scheme is reported. 3. Under aerobic conditions the oxygen-independent reaction represents the main rate-limiting step in the catalytic process at alkaline pH. At neutral or acid pH the interaction between reduced enzyme and oxygen becomes mainly rate-limiting, indicating that the concentration of oxygen may be a critical factor controlling enzyme activity under physiological conditions. 4. The spectrally modified intermediate formed during the reoxidation process exhibits a difference-absorption band centered around 290 nm in comparison to free enzyme, and an additional difference-absorption band at 470 nm in comparison to reduced enzyme. These data indicate that formation of the intermediate, besides leading to a reappearance of the 470-nm absorption band disappearing on reduction of the enzyme, results in a spectral perturbation of one or several aromatic amino-acid residues in the protein. This perturbation could possibly reflect a conformational change of the enzymes.  相似文献   

14.
The reaction of prostaglandin H synthase with prostaglandin G2, the physiological substrate for the peroxidase reaction, was examined by rapid reaction techniques at 1 degree C. Two spectral intermediates were observed and assigned to higher oxidation states of the enzymes. Intermediate I was formed within 20 ms in a bimolecular reaction between the enzyme and prostaglandin G2 with k1 = 1.4 x 10(7) M-1 s-1. From the resemblance to compound I of horseradish peroxidase, the structure of intermediate I was assigned to [(protoporphyrin IX)+.FeIVO]. Between 10 ms and 170 ms intermediate II was formed from intermediate I in a monomolecular reaction with k2 = 65 s-1. Intermediate II, spectrally very similar to compound II of horseradish peroxidase or complex ES of cytochrome-c peroxidase, was assigned to a two-electron oxidized state [(protoporphyrin IX)FeIVO] Tyr+. which was formed by an intramolecular electron transfer from tyrosine to the porphyrin-pi-cation radical of intermediate I. A reaction scheme for prostaglandin H synthase is proposed where the tyrosyl radical of intermediate II activates the cyclooxygenase reaction.  相似文献   

15.
The spectral behavior of the enzyme prostaglandin H synthase was studied in the Soret region under conditions that permitted comparison of enzyme intermediates involved in peroxidase and cyclooxygenase activities. First, the peroxidase activity was examined. The enzyme's spectral behavior upon reacting with 5-phenyl-pent-4-enyl-1-hydroperoxide was different depending on the presence or absence of the reducing substrate, phenol. In the reaction of prostaglandin H synthase with the peroxide in the absence of phenol, formation of the enzyme intermediate compound I is observed followed by partial conversion to compound II and then by enzyme bleaching. In the reaction with both peroxide and phenol the absorbance decreases and a steady-state spectrum is observed which is a mixture of native enzyme and compound II. The steady state is followed by an increase in absorbance back to that of the native enzyme with no bleaching. The difference can be explained by the reactivity of phenol as a reducing substrate with the prostaglandin H synthase intermediate compounds. Cyclooxygenase activity with arachidonic acid could not be examined in the absence of diethyldithiocarbamate because extensive bleaching occurred. In the presence of diethyldithiocarbamate, enzyme spectral behavior similar to that seen in the reaction of the peroxide and phenol was observed. The similarity of the spectra strongly suggests that the enzyme intermediates involved in both the peroxidase and cyclooxygenase reactions are the same.  相似文献   

16.
Extracellular release of superoxide anion (O-2) and hydrogen peroxide (H2O2) during the respiratory burst of porcine and human neutrophils was studied by using diacetyldeuteroheme-substituted horseradish peroxidase as a trapping agent for these oxygen derivatives. The method permitted simultaneous measurement of oxygen consumption and formation of both O-2 and H2O2 in a single reaction mixture. When neutrophils were stimulated with phorbol myristate acetate in the presence of the heme-substituted peroxidase, a rapid accumulation of compound III, a complex of the enzyme with O-2, was observed accompanying an increase in oxygen consumption. During the process, amounts of compound III formed and oxygen consumed were stoichiometric, and no compound II, an indicator of H2O2 formation, was observed. These results establish that neutrophils stimulated with the phorbol ester produce exclusively O-2 as the primary oxygen metabolite and release it into the extracellular medium. When a limited amount of opsonized zymosan was used as the stimulus, compound III formation was also observed but it ceased at an early stage of oxygen consumption. When a sufficient amount of azide was included in the system, however, formation of compound II was noted in the later stage of oxygen consumption. The findings suggest that O-2, formed during phagocytosis, is converted to H2O2 within phagosomes and then diffuses out into the extracellular medium when its decomposition by catalase and/or peroxidases is blocked by azide.  相似文献   

17.
The urea and heat-induced unfolding-refolding behaviours of chicken egg white ovomucoid and its four fragments representing domains I, II + III, I + II and III were systematically investigated in 0.06 M sodium phosphate buffer (pH 7.0) by difference spectral measurements. The effect of temperature on ovomucoid and its fragments was also studied in 0.05 M sodium acetate buffer (pH 5.0) and in presence of 2 M urea at pH 7.0. Intrinsic viscosity data showed that ovomucoid and its different fragments did not lose any significant amount of their structure under mild acidic conditions (pH 4.6). Difference spectral results showed extensive disruption of the native structure by urea or temperature. Isothermal transitions showed single-step for domain I, domain I + II and domain III, and two-step having one stable intermediate, for ovomucoid and its fragment representing domain II + III. However, the presence of intermediate was not detected when the transitions were studied with temperature at pH 7.0. Strikingly, the single-step thermal transitions of ovomucoid and its fragment representing domain II + III, became two-step when measured either at pH 5.0 or in presence of 2 M urea at pH 7.0. Analysis of the equilibrium data on urea and heat denaturation showed that the second transition observed with ovomucoid or domain II + III represent the unfolding of domain III. The kinetic results of ovomucoid and its fragments indicate that the protein unfolds with three kinetic phases. A comparison of three rate constants for the unfolding of intact ovomucoid with that of its various fragments revealed that domain I, II and III of the protein correspond to the three kinetic phases having rate constants 0.456, 0.120 and 0.054 min-1, respectively. These data have led us to conclude: (i) the unusual stability of ovomucoid towards various denaturants, including temperature, is due to its domain III, (ii) initiation of the folding of the ovomucoid molecule starts from its NH2-terminal region which probably provides the nucleation site for the formation of the subsequent structure and (iii) domains I and II have greater mutual recognition between them as compared to the recognition either of them have with domain III.  相似文献   

18.
The H2O2 dependent catalysis of cytochrome P-450 was compared with the catalytic mechanism of horse radish peroxidase, methemoglobin and iron protoporphyrin complexes. A relatively stable intermediate being comparable to compound I of horse radish peroxidase is formed in the case of iron porphyrin complexes, methemoglobin and probably cytochrome P-450. In the case of peroxidase compound II is the more stable intermediate. This could be the reason for the different catalytic properties of peroxidase on the one hand and iron porphyrin complexes, methemoglobin and cytochrome P-450 on the other hand.  相似文献   

19.
1. The phosphorylation of milk alkaline phosphatase was studied under various conditions: maximum incorporation occurred at pH5.0 and 50% incorporation at pH6.6-7.0. 2. The phosphorylation was shown to be specific and the results suggest that the active centre of the enzyme is involved in the process. 3. Phosphoryl-enzyme is rapidly hydrolysed at alkaline pH. at pH7.0 the results suggest that a phosphoryl-enzyme could occur as a transient intermediate in the hydrolysis of phosphate esters by the phosphatase. 4. The catalytic-centre activity of the enzyme was found to be 2700sec.(-1) at pH10.0 and 25 degrees with p-nitrophenyl phosphate as substrate.  相似文献   

20.
Bifunctional catalase-peroxidases are the least understood type of peroxidases. A high-level expression in Escherichia coli of a fully active recombinant form of a catalase-peroxidase (KatG) from the cyanobacterium Anacystis nidulans (Synechococcus PCC 6301) is reported. Since both physical and kinetic characterization revealed its identity with the wild-type protein, the large quantities of recombinant KatG allowed the examination of both the spectral characteristics and the reactivity of its redox intermediates by using the multi-mixing stopped-flow technique. The homodimeric acidic protein (pI = 4.6) contained high catalase activity (apparent K(m) = 4.8 mM and apparent k(cat) = 8850 s(-1)). Cyanide is shown to be an effective inhibitor of the catalase reaction. The second-order rate constant for cyanide binding to the ferric protein is (6.9 +/- 0.2) x 10(5) M(-1 )s(-1) at pH 7.0 and 15 degrees C and the dissociation constant of the cyanide complex is 17 microM. Because of the overwhelming catalase activity, peroxoacetic acid has been used for compound I formation. The apparent second-order rate constant for formation of compound I from the ferric enzyme and peroxoacetic acid is (1.3 +/- 0.3) x 10(4 )M(-1 )s(-1) at pH 7.0 and 15 degrees C. The spectrum of compound I is characterized by about 40% hypochromicity, a Soret region at 406 nm, and isosbestic points between the native enzyme and compound I at 355 and 428 nm. Rate constants for reduction of KatG compound I by o-dianisidine, pyrogallol, aniline and isoniazid are shown to be (7.3 +/- 0.4) x 10(6) M(-1 )s(-1), (5.4 +/- 0.3) x 10(5) M(-1 )s(-1), (1.6 +/- 0.3) x 10(5) M(-1 )s(-1) and (4.3 +/- 0.2) x 10(4) M(-1 )s(-1), respectively. The redox intermediate formed upon reduction of compound I did not exhibit the classical red-shifted peroxidase compound II spectrum which characterizes the presence of a ferryl oxygen species. Its spectral features indicate that the single oxidizing equivalent in KatG compound II is contained on an amino acid which is not electronically coupled to the heme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号