首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The connection of the variable part of the heavy chain (VH) and and the variable part of the light chain (VL) by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv) was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv) fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab) with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display.  相似文献   

2.
The hemocyanin of Rapana thomasiana grosse (marine snail, gastropod) is a glycoprotein with a carbohydrate content of 8.9% (w/w) and monosaccharide constituents xylose, fucose, 3-OOmethylgalactose, mannose, galactose, N-acetylgalactosamine and N-acetylglucosamine residues. The two structural subunits of this oxygen carrier, RHSS1 and RHSS2, are unevenly glycosylated. On subtracting the carbohydrate contribution from the Mr values of 250 and 450 kDa attributed to the two subunits, values of 2.18 × 105 daltons and 4.30 × 105 daltons were calculated for the polypeptide part of the “light” and “heavy” subunits, respectively. Comparison of the monosaccharide compositions of gastropodan hemocyanins revealed qualitative similarities, as well as relationships between the quantities, of the individual monosaccharides: Man 3MeGal > GlcNAc GalNAc and Fuc Xyl  相似文献   

3.
CAD, is a multidomain polypeptide, with a molecular weight of over 200,000, that has glutamine-dependent carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase activity as well as regulatory sites that bind UTP and 5-phosphoribosyl 1-pyrophosphate. The protein thus catalyzes the first three steps of de novo pyrimidine biosynthesis and controls the activity of the pathway in higher eukaryotes. Controlled proteolysis of CAD isolated from Syrian hamster cells, cleaves the molecule into seven major proteolytic fragments that contain one or more of the functional domains. The two smallest fragments, which had molecular weights of 44,000 and 40,000, corresponded to the fully active dihydroorotase (DHO) and aspartate transcarbamylase (ATC) domains, respectively, but the larger fragments have not been previously characterized. In this study, enzymatic assays of partially fractionated digests and immunoblotting with antibodies specifically directed against the purified ATC domain, the purified dihydroorotase domain and an 80-kDa fragment of the putative carbamyl-phosphate synthetase domain established the precursor-product relationships among all of the major proteolytic fragments of CAD. These results indicate that 1) only the intact molecule had all of the functional domains, 2) a species with a molecular weight of 200,000 was produced in the first step of proteolysis which had glutamine-dependent carbamyl-phosphate synthetase and dihydroorotase activity, but neither aspartate transcarbamylase activity nor the antigenic determinants present on the isolated ATC domain, and 3) cleavage of the 200-kDa species produced a species, with a molecular mass of 150,000 which lacked both aspartate transcarbamylase and dihydroorotase domains. This 150-kDa species, containing the postulated carbamyl-phosphate synthetase, glutamine, and regulatory (UTP, 5-phosphoribosyl 1-pyrophosphate) domains, had two elastase-sensitive sites that divided this region of the polypeptide chain into 10-, 65-, and 80-kDa segments. The location of the functional sites on these segments has not yet been established. The immunochemical analysis also revealed the existence of possible precursors of the stable aspartate transcarbamylase and dihydroorotase domains, suggesting that the chain segments connecting the functional domains of CAD are extensive and that the overall size of the intact polypeptide chain has been underestimated. On the basis of these studies we have proposed a model of the domain structure of CAD.  相似文献   

4.
Fragment complementation has been used to investigate the role of chain connectivity in the catalytic reaction of phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa, a human pathogen. A heterodimer of PMM/PGM, created from fragments corresponding to its first three and fourth domains, was constructed and enzyme activity reconstituted. NMR spectra demonstrate that the fragment corresponding to the fourth (C‐terminal) domain exists as a highly structured, independent folding domain, consistent with its varied conformation observed in enzyme–substrate complexes. Steady‐state kinetics and thermodynamics studies reported here show that complete conformational freedom of Domain 4, because of the break in the polypeptide chain, is deleterious to catalytic efficiency primarily as a consequence of increased entropy. This extends observations from studies of the intact enzyme, which showed that the degree of flexibility of a hinge region is controlled by the precise sequence of amino acids optimized through evolutionary constraints. This work also sheds light on the functional advantage gained by combining separate folding domains into a single polypeptide chain.  相似文献   

5.
6.
The amino terminal functional unit (domain a) of the Rapana hemocyanin “heavy” structural subunit, designated as Rta, was obtained after limited trypsinolysis of the whole polypeptide chain. Mass spectrometric analysis showed a molecular mass of 49,698 daltons for the electrophoretically homogeneous fragment. Twenty-five amino acid residues were sequenced directly from the N-terminus of Rta, which allowed the location of the domain in the polypeptide chain of the subunit. Physicochemical parameters were determined by absorption and fluorescence spectroscopy and circular dichroism. Comparison with the respective parameters of the whole Rapana hemocyanin showed that the polypeptide backbone folding, binuclear active site and capability of oxygen binding of the isolated functional unit are identical to those of the native hemocyanin. Comparison of N-terminal sequences of functional units from different molluskan hemocyanins and located at different positions revealed some evolutionary relationships.  相似文献   

7.
Complementary DNAs of two kinesin-related genes,katB andkatC, were isolated fromArabidopsis thaliana and sequenced. The carboxyl-terminal regions of the polypeptides encoded by these genes, especially the presumptive ATP-binding and microtubule-binding domains, share significant sequence homology with the mechanochemical motor domain of the kinesin heavy chain. The predicted secondary structures of KatB and KatC proteins include a large globular domain in the carboxyl-terminal region and a small globular domain in the amino-terminal region that are separated by a long -helical coiled-coil with heptad repeats. A truncated KatC polypeptide (KatC(207–754)), which includes the carboxylterminal region of KatC, was expressed inEscherichia coli and was shown to possess microtubule-stimulated ATPase activity and to bind to microtubules in an ATP-sensitive manner, both of which are characteristics of kinesin and kinesin-like proteins.  相似文献   

8.
Keyhole limpet hemocyanin (KLH) is a mixture of two hemocyanin isoforms, termed KLH1 and KLH2. Within KLH1 eight oxygen-binding functional units (FUs), 1-a to 1-h, have been identified, in contrast to KLH2, which was previously thought to be organized in seven FUs (2-a to 2-g). By limited proteolysis of KLH2 subunits, isolation of the polypeptide fragments, and N-terminal sequencing, we have now identified an eighth FU of type h, with a molecular mass of 43 kDa. This is unusually small for a FU h from a gastropodan hemocyanin. It is also shown that KLH2 didecamers can be split into a stable and homogeneous population of decamers by dialysis against 50 mM Tris/HCl, pH 7.5, in the absence of divalent cations. Electron microscopic immunolocalization using a specific monoclonal antibody reveals that FU KLH2-h is located at the collar of the decamer.  相似文献   

9.
We have purified and characterized a protein from the water-soluble fraction of wheat kernel (Triticum aestivum cv. S. Pastore) consisting of a single polypeptide chain blocked at its N-terminus by a pyroglutamate residue; the complete amino acid sequence has been determined by automated sequence analysis performed on peptide fragments obtained by enzymatic hydrolyses of the protein. Homology studies have shown that this protein is very similar (97% sequence identity) to the previously characterized wheatwin1 as well as to other members of the pathogenesis-related (PR) proteins of class 4; in analogy with wheatwin1, we have termed this protein wheatwin2. Both wheatwin1 and wheatwin2 have specific antifungal activity toward the wide-host-range pathogenBotrytis cinerea and the wheat-specific pathogenic fungi of wheatFusarium culmorum andFusarium graminearum of groups 1 and 2. On the basis of their structural and functional properties, wheatwin1 and wheatwin2 can be classified as members of the PR4 protein family; this represents the first report concerning the presence of this kind of protein in wheat.  相似文献   

10.
The intramolecular melting of the human Lys-plasminogen and its different fragments were studied by the differential scanning microcalorimetry method. Thermodynamical analysis of melting curves showed that the Lys-plasminogen molecule consists of 7 domains. Five of them are formed by five homologeus regions of the polypeptide chain (kringle), while two domains are formed by the part of the polypeptide chain corresponding to the plasmin light chain. The domains included in the fragments seem to be rather independent, since fragmentation does not lead to noticeable changes of their stability in comparison to that of the intact molecule. It has been shown also that plasminogen-plasmin conversion is accompanied by structural transformation of the molecule which results in the destabilization of one of the light chain domains.  相似文献   

11.
Abstract

A fast search algorithm to reveal similar polypeptide backbone structural motifs in proteins is proposed. It is based on the vector representation of a polypeptide chain fold in which the elements of regular secondary structures are approximated by linear segments (Abagyan and Maiorov, J. Biomol. Struct. Dyn. 5, 1267–1279 (1988)). The algorithm permits insertions and deletions in the polypeptide chain fragments to be compared. The fast search algorithm implemented in FASEAR program is used for collecting βαβ supersecondary structure units in a number of α/β proteins of Brookhaven Data Bank. Variation of geometrical parameters specifying backbone chain fold is estimated. It appears that the conformation of the majority of the fragments, although almost all of them are right-handed, is quite different from that of standard βαβ units. Apart from searching for specific type of secondary structure motif, the algorithm allows automatically to identify new recurrent folding patterns in proteins. It may be of particular interest for the development of tertiary template approach for prediction of protein three-dimensional structure as well for constructing artificial polypeptides with goal-oriented conformation.  相似文献   

12.
A clone obtained from a broad bean (Vicia faba) developing cotyledon cDNA library contained the complete coding sequence of a polypeptide with very high homology to the small GTP-binding proteins Ran from human cells and Spi1 from yeast. These proteins belong to the ras superfamily of proteins involved in different basic cellular processes. The Ran/Spi1 proteins interact with a protein bound to DNA (RCC1) and are thought to function in the regulation of the cell cycle. The amino acid sequence of the obtained plant Ran-homologue, designated Vfa-ran, is 74% and 76% identical to Ran and Spi1, respectively. The five functional, conserved domains of ras-related proteins are present in the Vfa-ran sequence. However, as in Ran/Spi1 the C-terminus of Vfa-ran is very acidic and lacks the Cys motif for isoprenylation.Northern blotting revealed a corresponding mRNA expression in broad bean roots, leaves, and cotyledons with the highest level in roots.  相似文献   

13.
Recently [Marquardt et al. (2000) Gene 255: 257–265], we isolated a gene encoding a polypeptide of the light-harvesting complex of Photosystem I (LHC I) of the red alga Galdieria sulphuraria. By screening a G. sulphuraria cDNA library with a DNA probe coding for the conserved first transmembrane helix of this protein we isolated four additional genes coding for LHC I polypeptides. The deduced preproteins had calculated molecular masses of 24.6–25.6 kDa and isoelectric points of 8.09–9.82. N-terminal sequencing of a LHC I polypeptide isolated by gel electrophoresis allowed us to determine the cleavage site of the transit peptide of one of the deduced polypeptides. The mature protein has a calculated molecular mass of 20.6 kDa and an isoelectric point of 7.76. The genes were amplified from nuclear G. sulphuraria DNA by polymerase chain reaction (PCR) using oligonucleotides annealing in the regions of the start and stop codons as primers. All genomic sequences were 80–300 base pairs longer than the PCR products obtained from the respective cDNA clones, pointing to the existence of 1–5 introns per gene. The G. sulphuraria genes form a homogeneous gene family with overall pairwise amino acid identities of 46.0–56.6%. Homology to two diatom, one cryptophytic and two higher plant light-harvesting polypeptides was lower with pairwise identities of 21.1–34.1%. Only one diatom polypeptide showed a higher degree of identity of up to −39.3%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
A homogeneous cytochrome P-450scc preparation with a specific enzyme content of 18 nmol/1 mg protein has been obtained using affinity chromatography on adrenodoxin-Sepharose under optimal conditions of the protein adsorption onto and desorption from the affinity sorbent. The data on the N-terminal amino acid sequence of the enzyme, along with the results of electrophoretic and spectrophotometric analyses favoured the multistage cholesterol transformation to pregnenolone to be catalyzed by single species of cytochrome P-450scc consisting of one polypeptide chain. Limited proteolysis of cytochrome P-450scc with trypsin resulted, at the initial stages, in the formation (in an equimolar ratio) of two large polypeptide fragments, I and II, with Mr 27000 and 22000, respectively. Prolonged action of trypsin led to the digestion of fragment II and the formation of a stoichiometric amount of fragment III, Mr of about 14000. Cytochrome P-450scc converted by trypsin into equimolar mixtures of fragments I and II or I and III retained the major spectral and functional properties of the native protein. The aspartyl-prolyl linkages, sulphhydryl groups, and surface tyrosine residues are distributed nonuniformly among fragments I and II. These data, as well as a different resistance of the fragments to the action of trypsin, suggest that cytochrome P-450scc consists of two independently folded domains linked with a short loop of the polypeptide chain, the domains being rigidly associated under neutral conditions.  相似文献   

15.
The multienzyme gramicidin S synthetase 2 was treated with trypsin to obtain fragments capable of activating proline. Three different active fragments were detected. The course of proteolysis was simulated by using a concentration range of trypsin; the cleavage pattern indicated that one of the fragments was particularly stable. This fragment was purified and shown to have a molecular mass of 115 kDa. It was compared chromatographically, by SDS/PAGE, and enzymatically to a Pro-activating fragment produced by a gramicidin-S-negative mutant. It can be concluded that the proteolytic fragment represents a structure which is contained on a continuous part of the polypeptide chain of gramicidin S synthetase 2 and has a relatively compact structure. This provides evidence that the multienzyme gramicidin S synthetase 2 is, at least in part, constructed from functional domains. An approach towards extending these studies to other parts of the gramicidin S synthetase 2 molecule has also been devised. This work complements recombinant DNA studies in the area, providing stable functional fragments.  相似文献   

16.
Conditions of limited proteolysis of the protease Lon from Escherichia coli that provided the formation of fragments approximately corresponding to the enzyme domains were found for studying the domain functioning. A method of isolation of the domains was developed, and their functional characteristics were compared. The isolated proteolytic domain (LonP fragment) of the enzyme was shown to exhibit both peptidase and proteolytic activities; however, it cleaved large protein substrates at a significantly lower rate than the full-size protease Lon. On the other hand, the LonAP fragment, containing both the ATPase and the proteolytic domains, retained almost all of the enzymatic properties of the full-size protein. Both LonP and LonAP predominantly form dimers unlike the native protease Lon functioning as a tetramer. These results suggest that the N-terminal domain of protease Lon may play a considerable role in the process of the enzyme oligomerization.  相似文献   

17.
Wada  Masato  Shono  Mariko  Urayama  Osamu  Satoh  Shinobu  Hara  Yukichi  Ikawa  Yoji  Fujii  Tadashi 《Plant molecular biology》1994,26(2):699-708
Two cDNA clones (HAA13 and HAA1) which include conserved regions of genes of P-type ATPases were isolated from the marine alga Heterosigma akashiwo by a method that included the polymerase chain reaction. The longer cDNA (3286 bp), HAA13, consisted of an open reading frame that encoded a 106 kDa polypeptide of 977 amino acids with several possible transmembrane domains and conserved regions of eukaryotic P-type ATPases. One transmembrane domain had a leucine zipper structure. HAA1 was not a full-length gene (2054 bp) and lacked the 5 region, but it also included the conserved regions and putative transmembrane domains. Antibodies against the polypeptides encoded by HAA13 and HAA1 that have been expressed in Escherichia coli reacted with 100 kDa and 95 kDa polypeptides, respectively, on intracellular membranes of H. akashiwo cells. Immunostaining of H. akashiwo cells revealed that the HAA13 antigen was distributed on membranes around chloroplasts and the HAA1 antigen was located on small vesicles.  相似文献   

18.
The Wm locus of soybean [Glycine max (L.) Merr.] controls flower color. Dominant Wm and recessive wm allele of the locus produce purple and magenta flower, respectively. A putative full-length cDNA of flavonol synthase (FLS), gmfls1 was isolated by 5′ RACE and end-to-end PCR from a cultivar Harosoy with purple flower (WmWm). Sequence analysis revealed that gmfls1 consisted of 1,208 nucleotides encoding 334 amino acids. It had 59–72% homology with FLS proteins of other plant species. Conserved dioxygenase domains A and B were found in the deduced polypeptide. Sequence comparison between Harosoy and Harosoy-wm (magenta flower mutant of Harosoy; wmwm) revealed that they differed by a single G deletion in the coding region of Harosoy-wm. The deletion changed the subsequent reading frame resulting in a truncated polypeptide consisting of 37 amino acids that lacked the dioxygenase domains A and B. Extracts of E. coli cells expressing gmfls1 of Harosoy catalyzed the formation of quercetin from dihydroquercetin, whereas cell extracts expressing gmfls1 of Harosoy-wm had no FLS activity. Genomic Southern analysis suggested the existence of three to four copies of the FLS gene in the soybean genome. CAPS analysis was performed to detect the single-base deletion. Harosoy and Clark (WmWm) exhibited longer fragments, while Harosoy-wm had shorter fragments due to the single-base deletion. The CAPS marker co-segregated with genotypes at Wm locus in a F2 population segregating for the locus. Linkage mapping using SSR markers revealed that the Wm and gmfls1 were mapped at similar position in the molecular linkage group F. The above results strongly suggest that gmfls1 represents the Wm gene and that the single-base deletion may be responsible for magenta flower color.
  相似文献   

19.
The native enzyme must be denatured either by sodium dodecyl sulfate or by urea before limited proteolysis can occur. Under these conditions only one or two peptide bonds are hydrolyzed by each of the following proteases: Staphylococcal V8 protease, trypsin and elastase. The amino-terminal amino acid sequences were determined to identify the cleavage sites. The new sequences comprise approximately 20% of the entire polypeptide chain, and show good agreement with the nucleotide sequence of the trpC gene. Both V8 protease2 and elastase yield large carboxy-terminal fragments, about two thirds of the size of the parent enzyme, and corresponding small amino-terminal fragments. Trypsin cleaves a single peptide bond in the last one third of the polypeptide chain. After separation of the fragments, removal of dodecyl sulfate and renaturation, only the large fragments fold to stable structures. The small fragments precipitate. The large amino-terminal fragment catalyzes only the synthesis of indoleglycerol phosphate and precipitates when solutions are frozen and thawed. The large carboxy-terminal fragment catalyzes only the isomerization of N-(5′-phosphoribosyl)anthranilate and is stable towards freezing and thawing. These studies prove that the intact bifunctional enzyme consists of two autonomously folding, functional domains. They also support the notion that the bifunctional enzyme may have arisen by the fusion of separate ancestral genes, and that stabilization of the intrinsically labile indoleglycerol phosphate synthase domain by interdomain interactions is functionally advantageous.  相似文献   

20.
To map structural and functional epitopes of the cytomatrix protein plectin, a set of mAbs was prepared by immunization of mice. Using immunoblot analysis of plectin fragments obtained after limited digestion with various proteases, two groups of mAbs were distinguished. The epitopes of one group (1) were located on a 130-kD terminal segment of the plectin 300-kD polypeptide chain, whereas those of the other group (2) bound within a 40kD segment confined to a central domain of the polypeptide chain. Domains containing the epitopes of group 2 mAbs were shown to include in vitro phosphorylation sites for kinase A, whereas kinase C phosphorylation sites were found on the same terminal segment that contained group 1 mAb epitopes. Rotary shadowing EM of mAb (Fab fragment) -decorated plectin molecules at various states of aggregation, ranging from characteristic dumbbell-shaped single molecules to highly complex multimeric structures, revealed that the epitopes of group 1 as well as those of group 2 mAbs were located on plectin's roughly 200-nm long rod domain interlinking its two globular end domains. Epitopes of group 1 mAbs were localized within a region near the center of the rod, those of group 2 in more peripheral sections near the globular end domains. Solid-phase binding assays carried out in the presence of Fab fragments of mAbs demonstrated an interference of certain group 1 mAbs in the interactions of plectin with vimentin and lamin B. On the other hand, plectin's self-interaction was inhibited mainly by Fab fragments with epitopes in the peripheral rod domain (group 2 mAbs). Together, these results suggested that the molecular binding sites of plectin for vimentin and lamin B, as well as the phosphorylation sites for kinase C, were confined to a defined central section of plectin's rod domain. In addition, they suggest an involvement of peripheral rod sections in plectin self-association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号