首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Cis-dichloro-bis (isopropylamine) trans-dihydroxy platinum (IV) (CHIP) is a second generation platinum coordination complex now in Phase II clinical trials. In vitro studies with Chinese Hamster Ovary cell cultures show that CHIP is a phase-sensitive drug, being most cytotoxic to cells in early G1 phase and least toxic to late S and G1 phase cells. the dose-modifying factor between the drug sensitivity of cells treated in G1 and in late S phase is 1.6. These findings and their clinical significance are discussed with respect to the phase sensitivity of other cytotoxic agents.  相似文献   

2.
Abstract. Hydroxyurea induces profound changes in the pluripotential haemopoietic stem cell (CFU-s) kinetics. The main feature of these changes is a synchronous entry of resting Go CFU-s into the cell cycle. The analysis of the passage of the CFU-s cohort through the cell cycle has been largely based on the examination of the fraction of CFU-s which synthesize DNA in the S phase of the cell cycle. This analysis has, however, been hampered by the fact that both the sensitivity of the S phase CFU-s to hydroxyurea and their sensitivity in the [3H] thymidine suicide technique vary as the cells pass through the S phase. Methods which overcome these difficulties have been used in the experiments presented in this paper.
It was demonstrated that hydroxyurea kills only about 80% of the S phase CFU-s. The sensitivity to hydroxyurea gradually decreases as the cells approach the middle part of the S phase and increases again as the cells enter the late portions of the S phase.
The degree of CFU-s synchrony at the point of entry into and exit from, the S phase has been established. Mathematical analysis of the available data suggests that CFU-s pass through the S phase with a mean transit time of 4–79 hr (standard deviation, 1.45 hr).
Hydroxyurea, administered in vivo , blocks CFU-s in the late G1 phase. The duration of this G1-S block, induced by a dose of 1000 mg of hydroxyurea per kg body weight, is approximately 2 hr. The CFU-s in the middle of the S phase, which survive hydroxyurea administration, are also blocked in their passage through the S phase. These cells, however, seem to finish the S phase with a delay of approximately 2 hr.  相似文献   

3.
Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: 1) cell volume; 2) cell cycle position; and 3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings 1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and 2) demonstrate EC subpopulations in culture.  相似文献   

4.
The cytotoxic effect of a direct perturbation of DNA during various portions of the DNA synthetic period (S phase) of cultured human diploid fibroblasts was examined. The cells were synchronized by a period of growth in low serum with a subsequent blockage of the cells at the G1/S boundary by hydroxyurea. This method resulted in over 90% synchrony, although approximately 20% of the cells were noncycling. Synchronized cells were treated for each of four 2-hour periods during the S phase with 5-bromodeoxyuridine (0.1–10 μM), followed by irradiation with near-UV (5–10 min). The 5-bromodeoxyuridine-plus-irradiation treatment was cytotoxic, while treatment with 5-bromodeoxyuridine alone or irradiation alone was not cytotoxic. The cytotoxicity was dependent upon the periods of S phase during which treatment was administered. The highest lethality was observed for treatment in early to middle S phase, particularly in the first 2 hours of S phase, whereas scarce lethality was observed in late S phase. The extent of substitution of 5-bromodeoxyuridine for thymidine in newly synthesized DNA was similar in every period of the S phase. Furthermore, no specific period during S phase was significantly more sensitive to treatment with respect to DNA damage, as determined by an induction of unscheduled DNA synthesis. These results suggest that a certain region or regions in the DNA of human diploid fibroblasts, as designated by their specific temporal relationship in the S phase, may be more sensitive to the DNA perturbation by 5-bromodeoxyuridine treatment plus near-UV irradiation for cell survival.  相似文献   

5.
We examined radiosensitizing properties of two novel platinum complexes (ethylenediamine(L-malato)platinum(II)), Pt1 and bis(1-ethylimidazole(L-malato)platinum(II)), Pt4. Initial double strand break (DSB) level and DSB rejoining were measured, using pulse field gel electrophoresis (PFGE) in human G1 phase lymphocytes subjected to Pt complex treatment alone and in combination with 10Gy of X-rays. Effects of Pt complex pre-treatment followed by X-irradiation were examined on survival (clonogenic ability) and growth (48 h growth tests) in Chinese hamster ovary (CHO-K1), xrs6 and L5178Y (LY) cells (LY-R and LY-S sublines). Cell cycle distributions of CHO cells after drug treatment were determined with the use of flow cytometry. Pt1 slowed down rejoining of X-ray induced DSB. It exerted a more than additive lethal effect on CHO-K1 cells but not on L5178Y cells subjected to combined Pt complex treatment and X-irradiation. In xrs6 cells the effect of combined Pt1+X treatment was additive. We conclude that, as earlier proposed for other Pt complexes, the radiosensitizing effect of Pt1 is connected with converting repairable DNA damage into irrepairable one (mode (i) of action). The requirements for this mode of sensitization are functional DNA repair systems (nucleotide excision repair (NER) and non-homologous end-joining (NHEJ)). Pt4 does not slow down DSB rejoining. It shows a considerable ability to arrest cells in G2 phase. We assume that Pt4 pre-treatment arrests cells in G2 phase and thus sensitizes to X-rays these cells that have a radiosensitive G2 phase (mode (ii) of action).  相似文献   

6.
The cytotoxic and mutagenic effects of a direct perturbation of DNA during various portions of the DNA synthetic period (S phase) of a chemically induced, transformed line (Hut-11A cells) derived from diploid human skin fibroblasts were examined. The cells were synchronized by a period of growth in low serum with a subsequent blockage of the cells at the G1/S boundary by hydroxyurea. This method resulted in over 90% synchrony, although approximately 20% of the cells were noncycling. Synchronized cells were treated for each of four 2-h periods during the S phase with 5-bromodeoxyuridine (BrdU) followed by irradiation with near-ultraviolet (UV). The BrdU-plus-irradiation treatment was cytotoxic and mutagenic, while treatment with BrdU alone or irradiation alone was neither cytotoxic nor mutagenic. The cytotoxicity was dependent upon the periods of S phase during which treatment was administered. The highest lethality was observed for treatment in early to middle S phase, particularly in the first 2 h of S phase, whereas scare lethality was observed in late S phase. The BrdU-plus-irradiation treatment induced ouabain- and 6-thioguanine-resistant mutants, while BrdU alone or irradiation alone was not mutagenic. Ouabain-resistant mutants were induced during early S phase by the BrdU-plus-irradiation treatment. 6-Thioguanine-resistant mutants, however, were induced during middle to late S phase. These results suggest that a certain region or regions in the DNA of Hut-11A cells, as designated by their specific temporal relationship in the S phase, may be more sensitive to the DNA perturbation by BrdU treatment plus near-UV irradiation for cell survival and that gene(s) responsible for Na+/K+ ATPase is replicated during early S phase and gene(s) for hypoxanthine phosphoribosyl transferase is replicated during middle to late S phase.  相似文献   

7.
C3H 10T1/2 cells were synchronized by a modified mitotic shake-off procedure. X irradiation of cells at various intervals after mitotic harvest indicated a single narrow window (about 2 h) of sensitivity to the induction of oncogenic transformation. It is not possible to delineate precisely the time in the cycle at which this sensitivity is expressed. The most likely candidate is G2 phase, though we cannot eliminate the possibility that the sensitive period begins in late S phase. In the same synchronized cells, cell lethality showed the conventional pattern, i.e., sensitivity in mitosis and resistance in late S and in G1 phase.  相似文献   

8.
The change in activity of nuclear poly(ADP-ribose) glycohydrolase during the cell cycle of HeLa S3 cells was investigated. The poly(ADP-ribose) glycohydrolase activity was solubilized from HeLa S3 cell nuclei and chromosomes only by sonication at high ionic strength. The enzyme hydrolyzed poly(ADP-ribose) exoglycosidically, producing ADP-ribose. After release from mitosis, the activity of the solubilized nuclear poly(ADP-ribose) glycohydrolase per nucleus or per unit protein, assayed with [3H]poly(ADP-ribose) (average chain length, n = 15) as substrate, was lowest in the early G1 phase and highest in the late G1 phase. The specific activity in the late G1 phase was about two times that in the early G1 phase. The high activity remained constant during the S-G2-M phase. A similar change during the cell cycle was observed after release from hydroxyurea block. These results suggest that the activity of poly(ADP-ribose) glycohydrolase doubled during the G1 phase of the cell cycle of HeLa S3 cells.  相似文献   

9.
As viruses are reliant upon their host cell to serve as proper environments for their replication, many have evolved mechanisms to alter intracellular conditions to suit their own needs. For example, human cytomegalovirus induces quiescent cells to enter the cell cycle and then arrests them in late G(1), before they enter the S phase, a cell cycle compartment that is presumably favorable for viral replication. Here we show that the protein product of the human cytomegalovirus UL82 gene, pp71, can accelerate the movement of cells through the G(1) phase of the cell cycle. This activity would help infected cells reach the late G(1) arrest point sooner and thus may stimulate the infectious cycle. pp71 also induces DNA synthesis in quiescent cells, but a pp71 mutant protein that is unable to induce quiescent cells to enter the cell cycle still retains the ability to accelerate the G(1) phase. Thus, the mechanism through which pp71 accelerates G(1) cell cycle progression appears to be distinct from the one that it employs to induce quiescent cells to exit G(0) and subsequently enter the S phase.  相似文献   

10.
The antitumor drug fostriecin (phosphotrienin, FST) has been reported to exert its cytostatic and cytotoxic effects via inhibition of DNA topoisomerase II. The sensitivity of human lymphocytic leukemic MOLT-4 and promyelocytic HL-60 leukemic cells to a wide range of FST concentrations was studied by analyzing the cell cycle-specific effects and changes in nuclear chromatin induced by this inhibitor. The latter was evaluated by assaying the sensitivity of DNA in situ to acid-induced denaturation cytofluorimetrically, with the use of the metachromatic fluorochrome acridine orange (AO), which differentially stains double-stranded and denatured DNA. The cytostatic effects were observed soon after addition of FST (at concentrations of 1-30 microM for MOLT-4 cultures and 1-5 microM for HL-60 cultures) as a perturbation of cell progression through S and G2 phases of the cell cycle. Cell progression through the cycle was halted at greater than 30 microM FST in MOLT-4 cultures and at greater than 5 microM in HL-60 cultures; the effect was instantaneous and affected all phases of the cycle, so that no changes in the cell cycle distribution were apparent with increasing length of exposure to the drug. Instead, at these high FST concentrations, immediate cytotoxic effects became evident, manifesting either as cell apoptosis or necrosis. Apoptosis was observed only in the case of HL-60 cells, at FST concentrations of 5-100 microM, and was characterized by markedly increased sensitivity of DNA to denaturation combined with a decrease in overall DNA stainability, either with the DNA-specific dye DAPI or with AO, indicative of the activation of endogenous nucleases. Necrotic cell death was observed at FST concentrations of 1 mM and at greater than 30 microM for HL-60 and MOLT-4 cells, respectively: in both cases the overall DNA stainability, with either DAPI or AO, was unchanged compared to the control, but their DNA was very sensitive to denaturation. Interestingly, DNA in G2 and late S phase MOLT-4 cells, which were undergoing necrotic death, was much more sensitive to denaturation than was DNA in G1 cells of this lineage. The data indicate that chromatin changes induced by DNA topoisomerase II inhibitors in cells that undergo apoptotic or necrotic death can be conveniently monitored by the assay of DNA in situ sensitivity to denaturation.  相似文献   

11.
Resistance of mammalian cells to S(N)1-type methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) generally arises through increased expression of methylguanine methyltransferase (MGMT), which reverts the cytotoxic O(6)-methylguanine ((Me)G) to guanine, or through inactivation of the mismatch repair (MMR) system, which triggers cell death through aberrant processing of (Me)G/T mispairs generated during DNA replication when MGMT capacity is exceeded. Given that MMR and (Me)G-detoxifying proteins are functionally conserved through evolution, and that MMR-deficient Escherichia coli dam(-) strains are also resistant to MNNG, the finding that MMR status did not affect the sensitivity of Saccharomyces cerevisiae to MNNG was unexpected. Because (Me)G residues in DNA trigger homologous recombination (HR), we wondered whether the efficient HR in S. cerevisiae might alleviate the cytotoxic effects of (Me)G processing. We now show that HR inactivation sensitizes S. cerevisiae to MNNG and that, as in human cells, defects in the MMR genes MLH1 and MSH2 rescue this sensitivity. Inactivation of the EXO1 gene, which encodes the only exonuclease implicated in MMR to date, failed to rescue the hypersensitivity, which implies that scExo1 is not involved in the processing of (Me)G residues by the S. cerevisiae MMR system.  相似文献   

12.
The age-response for the killing of HeLa S3 cells by X-rays during the latter part of the generation cycle has been examined in detail. As synchronous cells move from the G1/S boundary through S phase, the relatively high sensitivity of late G1 cells gradually decreases; minimum sensitivity is reached in mid-S and maintained during the remainder of that phase. The response of cells as they progress from S to the point in G2 at which they are temporarily arrested by radiation (or by inhibitors of protein synthesis) was measured in populations free of both S phase cells and late G2 cells that had passed the arrest point: cells retain their high resistance from early G2 up to the arrest point. The response of G2 cells that have passed the arrest point before being irradiated was examined by exposing randomly growing cultures to X-rays and collecting cells periodically thereafter, as they entered mitosis. Survival values very close to those of sensitive mitotic cells were found in the 2 h period after irradiation during which unarrested cells continued to reach mitosis. Values typical of lateS/early G2 were found only after cells that had been arrested began arriving at mitosis. Thus, HeLa S3 cell undergo an abrupt increase in sensitivity at or near the arrest point. The sensitivity to a second irradiation of cells arrested in G2 by a conditioning X-ray dose increases rapidly in the early part of the arrest period.  相似文献   

13.
Caffeine is known to potentiate the cytotoxicity of a variety of DNA damaging agents presumably by reducing the ability of the cells to repair potentially lethal lesions. However, in the present study we observe that 5 mM caffeine reverses the cell kinetic and cytotoxic effects of the intercalating drug Novantrone (mitoxantrone) on L1210, HL-60 and CHO cells. Novantrone alone, at a concentration of 20-30 ng/ml, given to cultures for 1 h, inhibits cell growth by about 50% and causes cells to accumulate in S and G2 phase and to enter a higher DNA ploidy level. Treatment of these cell lines with 5 mM caffeine alone for 1 h has a minimal effect on cell proliferation; suppression of cell growth varies from 5 to 10%. Exposure of cells to Novantrone for 1 h in the presence of caffeine results in a significant reduction of the Novantrone effects; the cell growth rate is partially restored (e.g. caffeine reduces suppression of L1210 cell growth from 48 to 83% of control) and in each of the cell lines studied, the Novantrone-induced cell accumulation in S and G2 is abolished. Combined treatment with caffeine and Novantrone also increases the clonogenicity of CHO cells 8.5 times over that seen in cultures treated with Novantrone alone. In contrast to the combined treatment with caffeine + Novantrone, pretreatment of cells with caffeine provides no protection. Likewise, post-treatment with caffeine provides little reversal of growth inhibition and G2 cell accumulation, especially if the post-treatment is delayed in time. The present data, in conjunction with evidence in the literature that caffeine protects cells against the cytotoxic effects of doxorubicin, suggest that caffeine may play a more general role in protecting cells against planar aromatic molecules such as intercalating agents.  相似文献   

14.
Cell spreading on extracellular matrix and associated changes in the actin cytoskeleton (CSK) are necessary for progression through G(1) and entry into S phase of the cell cycle. Pharmacological disruption of CSK integrity inhibits early mitogenic signaling to the extracellular signal-regulated kinase (Erk) subfamily of the mitogen-activated protein kinases (MAPKs) and arrests the cell cycle in G(1). Here we show that this block of G(1) progression is not simply a consequence of inhibition of the MAPK/Erk pathway but instead it reveals the existence of a discrete CSK-sensitive checkpoint. Use of PD98059 to inhibit MAPK/Erk and cytochalasin D (Cyto D) to disrupt the actin CSK at progressive time points in G(1) revealed that the requirement for MAPK/Erk activation lasts only to mid-G(1), while the actin CSK must remain intact up to late G(1) restriction point, R, in order for capillary endothelial cells to enter S phase. Additional analysis using Cyto D pulses defined a narrow time window of 3 h just prior to R in which CSK integrity was shown to be critical for the G(1)/S transition. Cyto D treatment led to down-regulation of cyclin D1 protein and accumulation of the cdk inhibitor, p27(Kip1), independent of cell cycle phase, suggesting that these changes resulted directly from CSK disruption rather than from a general cell cycle block. Together, these data indicate the existence of a distinct time window in late G(1) in which signals elicited by the CSK act independently of early MAPK/Erk signals to drive the cell cycle machinery through the G(1)/S boundary and, hence, promote cell growth.  相似文献   

15.
Cell distribution in different compartments of the cell cycle (G1, early, middle and late S, G2 and mitosis) has been studied during continuous treatments with hydroxyurea (HU) in onion root meristems by cytophotometric and autoradiographic methods. A sublethal dosis of HU (0.75 mM) has been chosen to allow a good wave of mitotic synchrony during recovery, with a negligible level of chromosomal aberrations. Proliferating cells begin the S period in the presence of HU and are accumulated in early S, where the maximum value (60%) is reached after 8 h of treatment; at the same time middle and late S are practically empty. In the presence of the drug, residual DNA synthesis allows a slow but continuous progress of cells throughout the S period. Differential sensitivity of S cells to HU can be observed; replication is more affected in early S (85% inhibition) than in the second half of the period (70% inhibition). On the other hand, G1 cells are not apparently affected by HU, while cells in G2 show a delay in their entrance into mitosis.  相似文献   

16.
The possibility was examined that inhibition of growth of PY815 mouse mastocytoma cells by N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate (DB cyclic AMP) results from inhibition of c-myc gene expression. Temporary increases in c-myc RNA which occurred soon after DB cyclic AMP treatment and upon removal of the drug were not consistent with direct inhibition of c-myc gene expression by DB cyclic AMP. The increases in c-myc RNA coincided with the passage through, or accumulation of cells in late G1-early S phase. It is proposed that cyclic AMP may stimulate c-myc gene expression which normally occurs only in late G1-early S phase in PY815 cells and that cyclic AMP prevents c-myc expression in cells at other phases of the cell cycle by inhibiting their progression past a cyclic AMP-sensitive restriction point in early G1 phase.  相似文献   

17.
Acquired resistance to cytotoxic antineoplastic agents is a major clinical challenge in tumor therapy; however, the mechanisms involved are still poorly understood. In this study, we show that knockdown of CtIP, a corepressor of CtBP, promotes cell proliferation and alleviates G2/M phase arrest in etoposide (Eto)-treated HCT116 cells. Although the expression of p21 and growth arrest and DNA damage inducible α (GADD45a), which are important targets of p53, was downregulated in CtIP-deficient HCT116 cells, p53 deletion did not affect G2/M arrest after Eto treatment. In addition, the phosphorylation levels of Ser317 and Ser345 in Chk1 and of Ser216 in CDC25C were lower in CtIP-deficient HCT116 cells than in control cells after Eto treatment. Our results indicate that CtIP may enhance cell sensitivity to Eto by promoting G2/M phase arrest, mainly through the ATR-Chk1-CDC25C pathway rather than the p53-p21/GADD45a pathway. The expression of CtIP may be a useful biomarker for predicting the drug sensitivity of colorectal cancer cells.  相似文献   

18.
We have extended our studies on the cell cycle dependence of thermotolerance to include HeLa cells heated at 45.0 degrees C to compare the results to Chinese hamster ovary (CHO) cells. We found that asynchronous HeLa cells were more resistant to heat than CHO cells but showed a similar development and decay of thermotolerance. Flow cytometry (FCM) was used to study redistributions in the cell cycle after an initial heat dose. Cells heated for 35 min at 45.0 degrees C were delayed in G1 by about 7 h compared to controls, with delays in late S and G2/M phase also. The heat sensitivity varied through the cell cycle; G1 cells were the most resistant to heat, while S-phase cells were uniformly sensitive throughout S phase, and G2 cells were resistant. Thermotolerance could be induced and expressed in early or late S-phase cells, but to a lesser extent than for G1 cells. The results were similar in many respects to CHO cells, but there were significant differences.  相似文献   

19.
The mitotic shake-off method revealed the remarkable variation of radiosensitivity of HeLa cells during the cell cycle: M phase shows the greatest radiosensitivity and late S phase the greatest radioresistance. This method harvests all M-phase cells with a round shape, making it impossible to further subdivide M-phase cells. Recently, the fluorescent ubiquitination-based cell cycle indicator (Fucci) was developed; this system basically causes cells in G(1) to emit red fluorescence and other cells to emit green fluorescence. Because the green fluorescence rapidly disappears at late M phase, two-dimensional flow cytometry analysis can usually detect a green(high)/red(low) fraction including S-, G(2)- and early M-phase cells but not a transitional fraction between green(high)/red(low) and green(low)/red(low) including late M-phase cells. However, combining the shake-off method concentrated the transitional fraction, which enabled us to separate early and late M-phase cells without using any drugs. Here we demonstrate for the first time that cells in early M phase are more radiosensitive than those in late M phase, implying that early M phase is the most radiosensitive sub-phase during the cell cycle.  相似文献   

20.
The current study investigated the relationship of the cell cycle phase (as G(0)/G(1), S, and G(2)/M) and cytotoxicity (as sub-G(1) DNA) to determine whether alterations in cell replication were associated with organophosphate (OP) compound induced cytotoxicity. Results demonstrated that, overall, OP compound--induced cell cycle changes were variable and depended on the OP compound, exposure concentration, and temporal relationship to cytotoxicity. Noncytotoxic OP compound treatments substantially decreased the percentage of cells in S phase of the cell cycle when compared to controls. A corresponding increase was seen in the percent of cells in G(0)/G(1) phase of the cell cycle. In the precytotoxic interval of exposure, most cytotoxic OP compound treatments substantially decreased the percentage of cells in G(2)/M phase of the cell cycle. Corresponding increases were seen primarily in G(0)/G(1) phase cells. Effects on cells in S stage of the cell cycle varied with the OP compound. In the during cytotoxic interval of exposure, most cytotoxic OP compound treatments substantially increased the percentage of cells in S phase of the cell cycle. A corresponding decrease in the percent of cells in G(0)/G(1) stage of the cell cycle was observed. Furthermore, treatments either increased or decreased the percentage of cells in G(2)/M phase of the cell cycle when compared to controls, with decreases more likely with the most cytotoxic OP compound exposures. Overall, the in vitro data suggest that exposure to OP compounds can alter the cell cycle status of SH-SY5Y neuroblastoma cells depending on compound, concentration, and interval from initial exposure. Changes in cell cycle, however, did not differentiate between OP compounds that are known for their ability to acutely inhibit acetylcholinesterase versus those inducing type I and type II delayed neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号