首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic fungi are potent fibre degrading microbes in the equine hindgut, yet our understanding of their diversity and community structure is limited to date. In this preliminary work, using a clone library approach we studied the diversity of anaerobic fungi along six segments of the horse hindgut: caecum, right ventral colon (RVC), left ventral colon (LVC), left dorsal colon (LDC), right dorsal colon (RDC) and rectum. Of the 647 ITS1 clones, 61.7 % were assigned to genus level groups that are so far without any cultured representatives, and 38.0 % were assigned to the cultivated genera Neocallimastix (35.1 %), Orpinomyces (2.3 %), and Anaeromyces (0.6 %). AL1 dominated the group of uncultured anaerobic fungi, particularly in the RVC (88 %) and LDC (97 %). Sequences from the LSU clone library analysis of the LDC, however, split into two distinct phylogenetic clusters with low sequence identity to Caecomyces sp. (94–96 %) and Liebetanzomyces sp. (92 %) respectively. Sequences belonging to cultured Neocallimastix spp. dominated in LVC (81 %) and rectum (75.5 %). Quantification of anaerobic fungi showed significantly higher concentrations in RVC and RDC compared to other segments, which influenced the interpretation of the changes in anaerobic fungal diversity along the horse hindgut. These preliminary findings require further investigation.  相似文献   

2.
The spatial diversity and distribution of AM fungi were investigated in three plots located in farming–pastoral zone, north China. The rhizospheres of Caragana korshinskii, Artemisia sphaerocephala and Salix psammophila were sampled and thirty AM fungal species belonging to five genera were isolated. The study demonstrated that AM fungal diversity and distribution differed significantly among the three host plants and the three studied plots. Spore density of AM fungi ranged between 2 and 22 spores per g?1 of soil and species richness between 8 and 23. Correlation coefficient analysis demonstrated that spore density was significantly and positively correlated with soil organic matter and available N (P?<?0.01). Species richness was significantly and positively correlated with soil organic matter and available P (P?<?0.01), but significantly and negatively correlated with soil pH (P?<?0.01). Finally, the Shannon–Weiner index was significantly and positively correlated with soil organic matter (P?<?0.05). In this farming–pastoral zone, Glomus reticulatum and G.melanosporum may be more adaptable to the arid conditions than other AM fungal species. This research into AM fungal diversity may lead to exploitation of AM fungi for the mitigation of soil erosion and desertification using mycorrhizal plants, such as C.korshinskii, A.sphaerocephala and S. psammophila. The results of this study support the conclusion that diversity and distribution of AM fungi might be useful to monitor desertification and soil degradation.  相似文献   

3.
The diversity and biological activities of the endophytic fungi associated with the Brazilian medicinal plant Stryphnodendron adstringens were studied. A total of 320 fungal isolates were obtained, and 66 phylotypes comprising 25 genera were identified. The fungal community of S. adstringens displayed high richness, diversity and low dominance indices. The most abundant phylotypes were closely related to Diaporthe phaseolorum, Guignardia camelliae, and Preussia pseudominima. Sixteen fungal extracts displayed biological activities when screened against bacteria, fungi, cancer cell lines, and amastigote forms of Leishmania amazonensis. The extract of phylotype Nigrospora cf. oryzae exhibited a selective antifungal activity and inhibited the growth of Candida albicans and Cladosporium sphaerospermum. The extracts of Diaporthe cf. phaseolorum and Xylaria sp. phylotypes displayed anticancer activities. Our results indicate that the endophytes associate with this medicinal plant may be a source for novel drugs.  相似文献   

4.
Communities of arbuscular mycorrhizal (AM) fungi were investigated in Stipa krylovii, Leymus chinensis (Poaceae), Allium bidentatum (Liliaceae), and Astragalus brevifolius (Fabaceae) in the Mongolian steppe to examine the effect of plant species on the communities in this study. The AM fungal communities were examined by molecular analysis based on the partial sequences of a small subunit of the ribosomal RNA gene. The sequences obtained were divided into 23 phylotypes by the sequence similarity >98%. Many of the AM fungal phylotypes included AM fungi previously detected in high-altitude regions in the Tibet and Loes plateaus, which suggested that these AM fungi may have wide distribution with stressful conditions of aridity and coldness. Among the 23 phylotypes, 12 phylotypes were found in all four plants, and 87.4% of the all obtained sequences were affiliated into these 12 types. For the distribution of the AM fungal phylotypes, overlapping of the phylotypes among the four plant species were significantly higher than that simulated by random chance. These results suggested that AM fungal communities were less diversified among the examined plant species.  相似文献   

5.
To better understand the diversity and species composition of arbuscular mycorrhizal fungi (AMF) in mangrove ecosystems, the AMF colonization and distribution in four semi-mangrove plant communities were investigated. Typical AMF hyphal, vesicle and arbuscular structures were commonly observed in all the root samples, indicating that AMF are important components on the landward fringe of mangrove habitats. AMF spores were extracted from the rhizospheric soils, and an SSU rDNA fragment from each spore morph-type was amplified and sequenced for species identification. AMF species composition and diversity in the roots of each semi-mangrove species were also analyzed based on an SSU-ITS-LSU fragment, which was amplified, cloned and sequenced from root samples. In total, 11 unique AMF sequences were obtained from spores and 172 from roots. Phylogenetic analyses indicated that the sequences from the soil and roots were grouped into 5 and 14 phylotypes, respectively. AMF from six genera including Acaulospora, Claroideoglomus, Diversispora, Funneliformis, Paraglomus, and Rhizophagus were identified, with a further six phylotypes from the Glomeraceae family that could not be identified to the genus level. The AMF genus composition in the investigated semi-mangrove communities was very similar to that in the intertidal zone of this mangrove ecosystem and other investigated mangrove ecosystems, implying possible fungal adaptation to mangrove conditions.  相似文献   

6.
The composition and diversity of fungal communities associated with three endangered orchid species, Hadrolaelia jongheana, Hoffmannseggella caulescens, and Hoffmannseggella cinnabarina, found in different vegetation formations of the Atlantic Forest were determined by constructing clone libraries and by applying diversity and richness indices. Our results demonstrated the presence of Basidiomycetes. Sebacinales (81.61 %) and Cantharellales (12.10 %) were the dominant orders and are potential candidates for orchid mycorrhizal fungi. The Ascomycetes identified included the Helotiales (29.31 %), Capnodiales (18.10 %), and Sordariales (10.34 %), among others. These orders may represent potentially endophytic fungi. A Shannon–Wiener diversity index (H′) analysis showed a relatively high fungal community diversity associated with these tropical orchids. This diversity may offer greater flexibility in terms of the adaptation of the plants to changing environmental conditions and the potential facilitation of reintroduction programs. The Simpson diversity index values showed that all of the libraries included dominant species, and a LIBSHUFF analysis showed that the fungal communities were structurally different from each other, suggesting an influence of local factors on this diversity. This study offers important information for the development of conservation strategies for threatened and endemic species of Brazilian flora in an important and threatened hotspot.  相似文献   

7.
We explored the diversity of mycorrhizal fungi associated with Monotropastrum humile in the central part of Japan's main island. We collected 103 M. humile individuals from 12 sites with various forest types. We analyzed the DNA sequences of the internal transcribed spacer region from fungal and plant nuclear ribosomal DNAs to assess the genetic diversity of the fungi associated with M. humile roots and to position the plant with respect to known Monotropoideae groups, respectively. The plants formed a monophyletic clade with other members of M. humile but were separated from M. humile var. glaberrimum and other monotropes (97% bootstrap support). Of the 50 fungal phylotypes, 49 had best matches with the Russulales, and the other had highest similarity with the Thelephoraceae. Our phylogenetic analysis suggests that M. humile roots have a highly specialized association with fungal partners in the Russulaceae. Moreover, a few fungal phylotypes from the M. humile roots had positions neighboring those from Monotropa uniflora roots. These results indicated that the genetic diversity of mycorrhizal fungi of M. humile was highly specific to the Russulaceae, but with high diversity within that family, and that the fungi associated with M. humile differ from those associated with M. uniflora.  相似文献   

8.
We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84–92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics’ discovery and further increase the pool of fungi available for natural bioactive product screening.  相似文献   

9.
The actinobacterial diversity of Arctic marine sediments was investigated using culture-dependent and culture-independent approaches. A total of 152 strains were isolated from seven different media; 18 isolates were selected for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 18 isolates belonged to a potential novel genus and 10 known genera including Actinotalea, Arthrobacter, Brachybacterium, Brevibacterium, Kocuria, Kytococcus, Microbacterium, Micrococcus, Mycobacterium, and Pseudonocardia. Subsequently, 172 rDNA clones were selected by restriction fragment length polymorphism analysis from 692 positive clones within four actinobacteria-specific 16S rDNA libraries of Arctic marine sediments, and then these 172 clones were sequenced. In total, 67 phylotypes were clustered in 11 known genera of actinobacteria including Agrococcus, Cellulomonas, Demequina, Iamia, Ilumatobacter, Janibacter, Kocuria, Microbacterium, Phycicoccus, Propionibacterium, and Pseudonocardia, along with other, unidentified actinobacterial clones. Based on the detection of a substantial number of uncultured phylotypes showing low BLAST identities (<95 %), this study confirms that Arctic marine environments harbour highly diverse actinobacterial communities, many of which appear to be novel, uncultured species.  相似文献   

10.

Background and aims

The effect of plant species on their root-associated arbuscular mycorrhizal (AM) fungi is well studied, but how this effect operates at the cultivar level remains poorly understood. This study investigates how wheat cultivars shape their AM fungal communities.

Methods

Twenty-one new wheat cultivars were traditionally cultivated in a dryland of northwestern China, and their agronomic traits, soil characteristics and the abundance and community composition of AM fungi were measured.

Results

Both spore community in soils and AM fungal phylotypes inside roots were significantly influenced by cultivar even though hyphal abundance, spore density and AM fungal diversity were similar across cultivars. Three out of 16 AM fungal phylotypes interacted with most cultivars, whilst some phylotypes preferred to colonize cultivars with similar agronomic traits. Six wheat cultivars, all which had hosted 6 AM fungal phylotypes, seemed to be generalists. Nestedness analysis and stochastic model fitting revealed that the AM fungal communities colonizing roots were codetermined by deterministic and stochastic processes.

Conclusions

A complex pattern of cultivar-AM fungal interactions was observed in this study, and our results highlight that the host effect on the community assembly of AM fungi could be operating on the level of plant cultivar.  相似文献   

11.
Knowledge of fungal root-associates is essential for effective conservation of tropical epiphytic orchids. We investigated the diversity of root-associated fungi of Cyrtochilum myanthum, Scaphyglottis punctulata and Stelis superbiens from a tropical mountain rainforest in southern Ecuador, using a culture dependent approach. We identified 115 fungal isolates, corresponding to 49 fungal OTUs, based on sequences of the nrDNA ITS and partial 28S region. Members of Ascomycota were unambiguously dominant (37 OTUs), including Trichoderma sp. as the most frequent taxon. Members of Basidiomycota (Agaricales and Polyporales) and Mucoromycota (Umbelopsidales and Mortierellales) were also identified. Four potential mycorrhizal OTUs of Tulasnellaceae and Ceratobasidiaceae were isolated from C. myanthum and S. superbiens. Fungal community composition was examined using Sørensen and Jaccard indices of similarity. Alfa diversity was significantly different between C. myanthum and S. superbiens. No difference in beta diversity of the fungal communities between the 3 orchid species and the collecting sites was detected. The study revealed a high diversity of fungi associated with orchid roots. Our results contribute to a better understanding of specific relationships between epiphytic orchids and their root-associated fungi.  相似文献   

12.
Large-scale marshland reclamation can cause substantial changes to the soil fungal community by disturbances associated with the growth of crop plants and by the addition of fertilizers and pesticides. In this study, high-throughput sequencing of the fungal-specific internal transcribed spacer (ITS) gene region was used to identify fungal taxa. We analyzed the variation in soil fungi diversity and community composition in marshland, paddy, and farmland corn soils, and investigated the relationship between soil fungal community composition and soil physicochemical characteristics to quantify the effect of large-scale reclamation on marshland soil environment in the Sanjiang Plain, northeast China. Marshland soil contained most of the 1997 operational taxonomic units (OTUs) found across all sites (1241), while paddy soil had only 614 OTUs and farmland corn soil 817 OTUs. All reclaimed lands presented a decline in richness and diversity of soil fungi at the OTU level, and soil fungal richness was significantly different between marshland and reclaimed sites (P < 0.05), although it did not differ significantly between marshland and farmland corn sites. Additionally, soil fungal community composition showed different trends and structure after the reclamation. One-way analysis of variance showed Basidiomycota, Zygomycota, Glomeromycota, and Chytridiomycota composition differed significantly between marshland and reclaimed sites (P < 0.05). Nine dominant genera (relative abundance >1.5% in at least one site) and many unclassified genera showed significant variation between marshland and reclaimed sites, including Blumeria, Tomentella, Peziza, Hypholoma, Zopfiella, Mrakia, and Fusarium. Soil fungal community composition and diversity were affected by soil moisture, pH, total carbon (C), available nitrogen (N), soil organic carbon, soil dissolved organic carbon, and C/N (the ratio of total carbon to total nitrogen). The present results contribute to understanding the fungal community in marshland ecosystems, and the role of environmental variability as a predictor of fungal community composition.  相似文献   

13.
We examined arbuscular mycorrhizal (AM) fungi colonizing the roots of Stipa krylovii, a grass species dominating the grasslands of the steppe zone in Hustai and Uvurkhangai in Mongolia. The AM fungal communities of the collected S. krylovii roots were examined by molecular analysis based on the partial sequences of a small subunit of ribosomal RNA gene as well as AM fungal colonization rates. Almost all AM fungi detected were in Glomus-group A, and were divided into 10 phylotypes. Among them, one phylotype forming a clade with G. intraradices and G. irregulare was the most dominant. Furthermore, it was also found that most of the phylotypes include AM fungi previously detected in high altitude regions in the Eurasian Continent. Significant correlations were found among soil total N, total plant biomass and AM fungal colonization ratio, which suggested that higher plant biomass may be required for the proliferation of AM fungi in the environment. Meanwhile, redundancy analysis on AM fungal distribution and environmental variables suggested that the effect of plant biomass and most soil chemical properties on the AM fungal communities were not significant.  相似文献   

14.
Conversion of native broadleaf forest (NF) and introduction of broadleaf species into monospecific Cunninghamia lanceolata plantations are silvicultural practices driven by the increasing demand for timber production. This study was conducted to evaluate the impacts of successive planting of C. lanceolata and mixed plantations (C. lanceolata-Michelia macclurei, CFM; C. lanceolata-Alnus cremastogyne, CFA; C. lanceolata-Kalopanax septemlobus, CFK) on microbial community diversity. Microbial biomass (MBC) was assessed using chloroform fumigation-extraction. Using denaturing gradient gel electrophoresis (DGGE), we examined the biodiversity within eubacterial (16S rRNA gene) and fungal (28S rRNA gene) species and two genes involved in N cycling: nifH and amoA. Microbial community diversities and microbial biomass decreased as NF was substituted by successive plantings of C. lanceolata plantations, whereas the trend reversed after introducing the broadleaf, M. macclurei, into pure C. lanceolata plantations. A strong positive correlation between MBC changes and total organic C (TOC), total organic N (TON), available N and extractable C (Cext) were seen, which suggests that MBC was tightly coupled with the content of soil organic matter. The Shannon index showed that bacterial diversity and two functional genes (nifH and amoA) diversities associated with monospecific C. lanceolata plantations were lower than that of NF or mixed C. lanceolata plantations, such as CFM and CFA, whereas the opposite was seen for fungal diversity. Bacterial diversity was positively correlated with pH, TOC, TON, Cext and NH 4 + -N; while fungal diversity was positively correlated with C/N ratio and negatively correlated with pH. Both nitrogen fixing and ammonia oxidizing bacterial diversities were positively correlated with pH. Thus, soil pH was not only significantly positively correlated with bacterial diversity (r?=?0.502, P?<?0.05), nifH gene diversity (r?=?0.564, P?<?0.01) and amoA gene diversity (r?=?0.659, P?<?0.001), but also negatively correlated with fungal diversity (r?=?? 0.505, P?<?0.05), which seemed to be responsible for the discrimination of the soil microbial communities among these plantations. These findings suggest that different silvicultural practices have significant impacts on the soil microbial community through influences on soil chemical properties.  相似文献   

15.
This study reports the use of culture-independent and culture-dependent approaches to identify naturally occurring communities of Bacteria and Fungi fouling the surfaces of concrete structures with and without an acrylic paint coating in Georgia, USA. Genomic DNA was extracted from four different sites and PCR amplification of bacterial ribosomal RNA (16S rRNA) genes and the internal transcribed spacer (ITS) region of fungal rRNA genes was conducted. Bacterial and fungal community composition was determined by restriction analysis of amplified DNA of eight clone libraries and sequencing. Five bacterial phyla were observed, and representatives of the phylum Cyanobacteria and the classes Betaproteobacteria and Gammaproteobacteria dominated the bacterial clone libraries. The ITS region of rRNA gene sequences revealed the dominant phylotypes in the fungal clone libraries to be most closely related to Alternaria, Cladosporium, Epicoccum and Udeniomyces. The majority of these fungal genera could be cultured from the sites and successfully used to foul concrete in laboratory-based experiments. While the fungal sequences were most closely related to cultured isolates, the vast majority of bacterial sequences in the libraries were related to uncultured environmental clones. Results show phylogenetically distinct microbial populations occurring at the four sites.  相似文献   

16.
Revealing the relationship between plants and root-associated fungi is very important in understanding diversity maintenance and community assembly in ecosystems. However, the community assembly of root-associated fungi of focal plant species along a subtropical plant species diversity gradient is less documented. Here, we examined root-associated fungal communities associated with five ectomycorrhizal (EM) plant species (Betula luminifera, Castanea henryi, Castanopsis fargesii, C. sclerophylla, and Quercus serrate) in a Chinese subtropical woody plant species diversity (1, 2, 4, 8, 16 and 24 species) experiment, using paired-end Illumina MiSeq sequencing of the ITS2 region. In total, we detected 1933 root-associated fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. Plant identity had a significant effect on total and saprotrophic fungal OTU richness, but plant species diversity level had a significant effect on saprotrophic and pathogenic fungal OTU richness. The community composition of total, saprotrophic and EM fungi was structured by plant identity and plant species diversity level. However, the community composition of pathogenic fungi was only shaped by plant identity. This study highlights that plant identity has a stronger effect on the root-associated fungal community than plant species diversity level in a diverse subtropical forest ecosystem.  相似文献   

17.
Variation in the abiotic environment and host plant preferences can affect the composition of arbuscular mycorrhizal (AMF) assemblages. This study analyzed the AMF taxa present in soil and seedlings of Artemisia tridentata ssp. wyomingensis collected from sagebrush steppe communities in southwestern Idaho, USA. Our aims were to determine the AMF diversity within and among these communities and the extent to which preferential AMF–plant associations develop during seedling establishment. Mycorrhizae were identified using molecular methods following DNA extraction from field and pot culture samples. The extracted DNA was amplified using Glomeromycota specific primers, and identification of AMF was based on phylogenetic analysis of sequences from the large subunit-D2 rDNA region. The phylogenetic analyses revealed seven phylotypes, two within the Claroideoglomeraceae and five within the Glomeraceae. Four phylotypes clustered with known species including Claroideoglomus claroideum, Rhizophagus irregularis, Glomus microaggregatum, and Funneliformis mosseae. The other three phylotypes were similar to several published sequences not included in the phylogenetic analysis, but all of these were from uncultured and unnamed glomeromycetes. Pairwise distance analysis revealed some phylotypes with high genetic variation. The most diverse was the phylotype that included R. irregularis, which contained sequences showing pairwise differences up to 12 %. Most of the diversity in AMF sequences occurred within sites. The smaller genetic differentiation detected among sites was correlated with differences in soil texture. In addition, multiplication in pot cultures led to differentiation of AMF communities. Comparison of sequences obtained from the soil with those from A. tridentata roots revealed no significant differences between the AMF present in these samples. Overall, the sites sampled were dominated by cosmopolitan AMF taxa, and young seedlings of A. tridentata ssp. wyomingensis were colonized in relation to the abundance of these taxa in the soil.  相似文献   

18.
A comprehensive survey of airborne fungi has been lacking for the Sydney region. This study determined the diversity and abundance of outdoor airborne fungal concentrations in urban Sydney. Monthly air samples were taken from 11 sites in central Sydney, and culturable fungi identified and quantified. The genus Cladosporium was the most frequently isolated fungal genus, with a frequency of 78 % and a mean density of 335 CFU m?3. The next most frequently encountered genus was Alternaria, occurring in 53 % of samples with a mean of 124 CFU m?3. Other frequently identified fungi, in decreasing occurrence, were as follows: Penicillium, Fusarium, Epicoccum, Phoma, Acremonium and Aureobasidium. Additionally, seasonal and spatial trends of airborne fungi were assessed, with increases in total culturable fungal concentrations experienced in the summer months. The correspondence between a range of key environmental variables and the phenology of airborne fungal propagules was also examined, with temperature, wind speed and proximal greenspace having the largest influence on fungal propagule density. If the greenspace was comprised of grass, stronger associations with fungal behaviour were observed.  相似文献   

19.
目的 通过高通量测序技术探究妊娠早期胚胎停育患者阴道真菌分布,比较其与正常早期妊娠者阴道真菌之间的差异,揭示胚胎停育与阴道真菌变化的相关性。 方法 选取2018年5月至2018年11月在兰州大学第二医院产科就诊的20例患者为研究对象,其中胚胎停育10例(实验组),正常早期妊娠10例(对照组)。分别取两组对象阴道分泌物样本行ITS rDNA高通量测序,测序数据进行OTU聚类分析,Alpha多样性和Beta多样性分析,组间群落差异性分析。 结果 实验组女性阴道真菌群落中未发现特征菌的存在,但菌群丰度显著高于对照组(P结论 阴道真菌丰度的显著变化可能与胚胎停育相关,尤其是Rhizopus丰度显著升高应当引起注意。  相似文献   

20.
The community structure of arbuscular mycorrhizal (AM) fungi associated with Ixeris repens was studied in coastal vegetation near the Tottori sand dunes in Japan. I. repens produces roots from a subterranean stem growing near the soil surface which provides an opportunity to examine the effects of an environmental gradient related to distance from the sea on AM fungal communities at a regular soil depth. Based on partial sequences of the nuclear large subunit ribosomal RNA gene, AM fungi in root samples were divided into 17 phylotypes. Among these, five AM fungal phylotypes in Glomus and Diversispora were dominant near the seaward forefront of the vegetation. Redundancy analysis of the AM fungal community showed significant relationships between the distribution of phylotypes and environmental variables such as distance from the sea, water-soluble sodium in soil, and some coexisting plant species. These results suggest that environmental gradients in the coastal vegetation can be determinants of the AM fungal community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号