首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trobro S  Aqvist J 《Biochemistry》2008,47(17):4898-4906
The current view of ribosomal peptidyl transfer is that the ribosome is a ribozyme and that ribosomal proteins are not involved in catalysis of the chemical reaction. This view is largely based on the first crystal structures of bacterial large ribosomal subunits that did not show any protein components near the peptidyl transferase center (PTC). Recent crystallographic data on the full 70S ribosome from Thermus thermophilus, however, show that ribosomal protein L27 extends with its N-terminus into the PTC in accordance with independent biochemical data, thus raising the question of whether the ribozyme picture is strictly valid. We have carried out extensive computer simulations of the peptidyl transfer reaction in the T. thermophilus ribosome to address the role of L27. The results show a reaction rate similar to that obtained in earlier simulations of the Haloarcula marismortui reaction. Furthermore, deletion of L27 is predicted to only give a minor rate reduction, in agreement with biochemical data, suggesting that the ribozyme view is indeed valid. The N-terminus of L27 is predicted to interact with the A76 phosphate group of the A-site tRNA, thereby explaining the observed impairment of A-site substrate binding for ribosomes lacking L27. Simulations are also reported for the reaction with puromycin, an A-site tRNA analogue which lacks the A76 phosphate group. The calculated energetics shows that this substrate can cause a downward p K a shift of L27 and that the reaction proceeds faster with the L27 N-terminus deprotonated, in contrast to the situation with aminoacyl-tRNA substrates. These results could explain the observed differences in pH dependence between the puromycin and C-puromycin reactions, where the former reaction has been seen to depend on an additional ionizing group besides the attacking amine, and our model predicts this ionizing group to be the N-terminal amine of L27.  相似文献   

2.
Protein synthesis in the ribosome's large subunit occurs within an active site comprised exclusively of RNA. Mutational studies of rRNA active site residues could provide valuable insight into the mechanism of peptide bond formation, but many of these mutations cause a dominant lethal phenotype, which prevents production of the homogeneous mutant ribosomes needed for analysis. We report a general method to affinity purify in vivo assembled 50S ribosomal subunits containing lethal active site mutations via a U1A protein-binding tag inserted onto the 23S rRNA. The expected pH-dependent formation of the A2450+C2063 wobble pair has made it a potential candidate for the pH-dependent conformational change that occurs within the ribosomal active site. Using this approach, the active site A2450+C2063 pair was mutated to the isosteric, but pH-independent, G2450•U2063 wobble pair, and 50S subunits containing the mutations were affinity purified. The G•U mutation caused the adjacent A2451 to become hyper-reactive to dimethylsulfate (DMS) modification in a pH-independent manner. Furthermore, the G•U mutation decreased both the rate of peptide bond formation and the affinity of the post-translocation complex for puromycin. The reaction rate (kpep) was reduced ~200-fold for both puromycin and the natural aminoacyl-tRNA A-site substrate. The mutations also substantially altered the pH dependence of the reaction. Mutation of this base pair has significant deleterious effects upon peptidyl transferase activity, but because G•U mutation disrupts several tertiary contacts with the wobble pair, the assignment of A2450 as the active site residue with the neutral pKa important for the peptidyl transferase reaction cannot be fully supported or excluded based upon these data.  相似文献   

3.
New “non-isomerizable” analogs of the 3′-terminus of AA-tRNA, C-A(2′Phe)H, C-A(2′Phe)Me, C-A(2′H)Phe and C-A(2′Me)Phe, were tested as acceptor substrates of ribosomal peptidyl transferase and inhibitors of the peptidyl transferase A-site function. The 3′-O-AA-derivatives were active acceptors of Ac-Phe in the peptidyl transferase reaction, while the 2′-O-AA-derivatives were completely inactive. Both 2′- and 3′-O-AA-derivatives were potent inhibitors of peptidyl transferase catalyzed Ac-Phe transfer to puromycin. The results indicate that although peptidyl transferase exclusively utilizes 3′-O-esters of tRNA as acceptor substrates, its A-site can also recognize the 3′-terminus of 2′-O-AA-tRNA.  相似文献   

4.
The catalytic mechanism of peptide bond formation on the ribosome is not known. The crystal structure of 50S ribosomal subunits shows that the catalytic center consists of RNA only and suggests potential catalytic residues. Here we report rapid kinetics of the peptidyl transferase reaction with puromycin at rates up to 50 s(-1). The rate-pH profile of the reaction reveals that protonation of a single ribosomal residue (pK(a) = 7.5), in addition to protonation of the nucleophilic amino group, strongly inhibits the reaction (>100-fold). The A2451U mutation within the peptidyl transferase center has about the same inhibitory effect. These results suggest a contribution to overall catalysis of general acid-base and/or conformational catalysis involving an ionizing group at the active site.  相似文献   

5.
The major enzymatic activity of the ribosome is the catalysis of peptide bond formation. The active site -- the peptidyl transferase center -- is composed of ribosomal RNA (rRNA), and interactions between rRNA and the reactants, peptidyl-tRNA and aminoacyl-tRNA, are crucial for the reaction to proceed rapidly and efficiently. Here, we describe the influence of rRNA interactions with cytidine residues in A-site substrate analogs (C-puromycin or CC-puromycin), mimicking C74 and C75 of tRNA on the reaction. Base-pairing of C75 with G2553 of 23S rRNA accelerates peptide bond formation, presumably by stabilizing the peptidyl transferase center in its productive conformation. When C74 is also present in the substrate analog, the reaction is slowed down considerably, indicating a slow step in substrate binding to the active site, which limits the reaction rate. The tRNA-rRNA interactions lead to a robust reaction that is insensitive to pH changes or base substitutions in 23S rRNA at the active site of the ribosome.  相似文献   

6.
The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.  相似文献   

7.
Ribosomes catalyze the formation of peptide bonds between aminoacyl esters of transfer RNAs within a catalytic center composed of ribosomal RNA only. Here we show that the reaction of P-site formylmethionine (fMet)-tRNA(fMet) with a modified A-site tRNA substrate, Phelac-tRNA(Phe), in which the nucleophilic amino group is replaced with a hydroxyl group, does not show the pH dependence observed with small substrate analogs such as puromycin and hydroxypuromycin. This indicates that acid-base catalysis by ribosomal residues is not important in the reaction with the full-size substrate. Rather, the ribosome catalyzes peptide bond formation by positioning the tRNAs, or their 3' termini, through interactions with rRNA that induce and/or stabilize a pH-insensitive conformation of the active site and provide a preorganized environment facilitating the reaction. The rate of peptide bond formation with unmodified Phe-tRNA(Phe) is estimated to be >300 s(-1).  相似文献   

8.
Replacement of the 5'-OH group of puromycin aminonucleoside (PAN) with H resulted in the elimination of kidney toxicity associated with administration of PAN. Thus, 5'-deoxy-PAN was not nephrotoxic to rats under the usual criteria. The corresponding 5'-deoxypuromycin derived from 5'-deoxy-PAN was examined in a ribosomal peptidyl transferase assay and was found to be an excellent substrate for the transpeptidation reaction with bacterial ribosomes; the Km was 0.29 mM compared to the Km for puromycin of 0.20 mM. Thus, a puromycin analog has been prepared which retains puromycin-like activity at the ribosomal level, but which is capable of releasing only a non-nephrotoxic aminonucleoside by enzymatic hydrolysis of the p-methoxyphenylalanyl side-chain.  相似文献   

9.
Peptide bond formation is the main catalytic function of the ribosome. The mechanism of catalysis is presumed to be highly conserved in all organisms. We tested the conservation by comparing mechanistic features of the peptidyl transfer reaction on ribosomes from Escherichia coli and the Gram-positive bacterium Mycobacterium smegmatis. In both cases, the major contribution to catalysis was the lowering of the activation entropy. The rate of peptide bond formation was pH independent with the natural substrate, amino-acyl-tRNA, but was slowed down 200-fold with decreasing pH when puromycin was used as a substrate analog. Mutation of the conserved base A2451 of 23 S rRNA to U did not abolish the pH dependence of the reaction with puromycin in M. smegmatis, suggesting that A2451 did not confer the pH dependence. However, the A2451U mutation alters the structure of the peptidyl transferase center and changes the pattern of pH-dependent rearrangements, as probed by chemical modification of 23 S rRNA. A2451 seems to function as a pivot point in ordering the structure of the peptidyl transferase center rather than taking part in chemical catalysis.  相似文献   

10.
AcPhe2-tRNA(Phe) which appears in ribosomes after consecutive binding of AcPhe-tRNA(Phe) at the P sites and EF-Tu-directed binding of Phe-tRNA(Phe) at the A sites is able to react quantitatively with puromycin in the absence of EF-G. One could readily explain this fact to be the consequence of spontaneous translocation. However, a detailed study of kinetics of puromycin reaction carried out with the use of viomycin (inhibitor of translocation) and the P-site test revealed that, apart from spontaneous translocation, this peptidyl-tRNA could react with puromycin being located at the A site. This leads to the conclusion that the transpeptidation reaction triggers conformational changes in the A-site ribosomal complex bringing the 3'-end of a newly synthesized peptidyl-tRNA nearer to the peptidyl site of peptidyltransferase center. This is detected functionally as a highly pronounced ability of such a peptidyl-tRNA to react with puromycin.  相似文献   

11.
The peptide bond-forming reaction of protein synthesis, the peptidyl transfer reaction, takes place in a region of the 50S ribosomal subunit that consists entirely of RNA, the peptidyl transferase centre. Basic to the present knowledge of peptidyl transfer was the discovery by Robin Monro and his colleagues in the 1960s that the reaction is catalyzed by the 50S ribosome. The Monro experiments, and the historical context in which they were conceived, are described in this personal recollection. Monro's 'fragment reaction', the ribosome catalyzed reaction of a fragment of formylmethionyl-tRNA with puromycin, remains in use in work on peptidyl transfer.  相似文献   

12.
Ribosomal variants carrying mutations in active site nucleotides are severely compromised in their ability to catalyze peptide bond formation (PT) with minimal aminoacyl tRNA substrates such as puromycin. However, catalysis of PT by these same ribosomes with intact aminoacyl tRNA substrates is uncompromised. These data suggest that these active site nucleotides play an important role in the positioning of minimal aminoacyl tRNA substrates but are not essential for catalysis per se when aminoacyl tRNAs are positioned by more remote interactions with the ribosome. Previously reported biochemical studies and atomic resolution X-ray structures identified a direct Watson-Crick interaction between C75 of the A-site substrate and G2553 of the 23S rRNA. Here we show that the addition of this single cytidine residue (the C75 equivalent) to puromycin is sufficient to suppress the deficiencies of active site ribosomal variants, thus restoring "tRNA-like" behavior to this minimal substrate. Studies of the binding parameters and the pH-dependence of catalysis with this minimal substrate indicate that the interaction between C75 and the ribosomal A loop is an essential feature for robust catalysis and further suggest that the observed effects of C75 on peptidyl transfer activity reflect previously reported conformational rearrangements in this active site.  相似文献   

13.
A puromycin analogue possessing a hydrophilic amino acid, 3′-N-[S-(6-hydroxyhexyl)-L-cysteinyl]puromycin aminonucleoside, has been prepared and examined as a substrate for ribosomal peptidyl transferase. Kinetic studies indicate that this non-aromatic aminoacyl analogue is 95.6% as efficient as the parent antibiotic in the transpeptidation reaction. In addition, the analogue is an effective inhibitor of poly (U) and poly (U,C) directed protein synthesis in an Escherichia coli cell free system.  相似文献   

14.
Protein L23 from the ribosome of Escherichia coli is the primary ribosomal product cross-linked to affinity-labelled puromycin; it lies, therefore, within the A-site domain of the peptidyl transferase centre on the 50 S subunit. We have characterized this functional domain by isolating and sequencing the RNA binding site of protein L23; it consists of two main fragments of 25 and 105 nucleotides that strongly interact and are separated by 172 nucleotides in the primary sequence. The higher-order structure of the RNA moiety was probed by chemical reagents, and by single-strand and double-strand-specific ribonucleases; a secondary structural model and a tertiary structural interaction are proposed on the basis of these data that are compatible with phylogenetic sequence comparisons.Several nucleotides exhibited altered chemical reactivity, both lower and higher, in the presence of protein L23, thereby implicating a large proportion of the RNA structure in the protein binding. The sites were located mainly at the extremities of the helices and at nucleotides that were putatively bulged out from the helices.The RNA moiety and an adjacent excised fragment contain several highly conserved sequences and a modified adenosine. Such sequences constitute important functional domains of the RNA and may contribute to the putative role of this RNA region in the peptidyl transferase centre.  相似文献   

15.
Following peptide-bond formation, the mRNA:tRNA complex must be translocated within the ribosomal cavity before the next aminoacyl tRNA can be accommodated in the A site. Previous studies suggested that following peptide-bond formation and prior to EF-G recognition, the tRNAs occupy an intermediate (hybrid) state of binding where the acceptor ends of the tRNAs are shifted to their next sites of occupancy (the E and P sites) on the large ribosomal subunit, but where their anticodon ends (and associated mRNA) remain fixed in their prepeptidyl transferase binding states (the P and A sites) on the small subunit. Here we show that pre-translocation-state ribosomes carrying a dipeptidyl-tRNA substrate efficiently react with the minimal A-site substrate puromycin and that following this reaction, the pre-translocation-state bound deacylated tRNA:mRNA complex remains untranslocated. These data establish that pre-translocation-state ribosomes must sample or reside in an intermediate state of tRNA binding independent of the action of EF-G.  相似文献   

16.
We have examined the structural specificity of the puromycin binding sites on the Escherichia coli ribosome that we have previously identified [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1982) Biochemistry 19, 3809-3817, and references cited therein] by examining the interactions of a series of adenine-containing compounds with these sites. We have used as measures of such interactions the inhibition of [3H]puromycin photoincorporation into ribosomal proteins from these sites, the site-specific photoincorporation of the 3H-labeled compounds themselves, and the inhibition of peptidyl transferase activity. For the first two of these measures we have made extensive use of a recently developed high-performance liquid chromatography (HPLC) method for ribosomal protein separation [Kerlavage, A. R., Weitzmann, C., Hasan, T., & Cooperman, B.S. (1983) J. Chromatogr. 266, 225-237]. We find that puromycin aminonucleoside (PANS) contains all of the structural elements necessary for specific binding to the three major puromycin binding sites, those of higher affinity leading to photoincorporation into L23 and S14 and that of lower affinity leading to photoincorporation into S7. Although tight binding to the L23 and S7 sites requires both the N6,N6-dimethyl and 3'-amino groups within PANS, only the N6,N6-dimethyl group and not the 3'-amino group is required for binding to the S14 site. Our current results reinforce our previous conclusion that photoincorporation into L23 takes place from the A' site within the peptidyl transferase center and lead us to speculate that the S14 site might be specific for the binding of modified nucleosides. They also force the conclusion that puromycin photoincorporation proceeds through its adenosyl moiety.  相似文献   

17.
The peptidyl transfer reaction catalyzed by the ribosome is a sophisticated product of evolution. The molecular mechanism of peptide bond formation has not been fully elucidated although the essential involvement of 23S rRNA has been established. The universal CCA sequence at the 3'-end of tRNA plays an important role in this process, by interacting with specific nucleotides in 23S rRNA. However, reconstitution of peptidyl transferase activity by a naked 23S rRNA (without the help of any of the ribosomal proteins) has not been reported. To investigate the possible evolutionary development of the peptidyl transfer reaction, we tried to obtain peptide bond formation using a piece of tRNA--an aminoacyl-minihelix--mixed with sequence-specific oligonucleotides that contained puromycin. This system reproduced conceptually the equivalent interactions between the CCA trinucleotide of tRNA and 23S rRNA. Peptide bond formation was detected by gel electrophoresis, TLC and mass spectrometry. These results have implications for the evolution of the peptidyl transfer reaction in biological system.  相似文献   

18.
Puromycin inhibits the interaction of peptidyl-tRNA analogs AcPhe-tRNA Phe ox-red, AcPhe-tRNA Phe and FMet-tRNA f Met with the donor (P) site of Escherichia coli ribosomes. It affects both template-free and poly(U)-dependent systems. The inhibition is apparently due to direct competition for the P-site. On isolated 30S ribosomal subunits it was shown that the puromycin binding site is situated far from the peptidyl transferase center. Quantitative measurements of the inhibition revealed that the affinity constant of puromycin for the P-site is not less than its affinity for the A-moiety of the peptidyl transferase center [1.1 divided by 3.8) X 10(3) M-1).  相似文献   

19.
Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.  相似文献   

20.
Puromycin inhibits the interaction of peptidyl-tRNA analogues AcPhe-tRNAox-redPhe, AcPhe-tRNAPhe and fMet-tRNAfMet with the donor (P-) site of Escherichia coli ribosomes. affects almost equally both the rate of the binding and the equilibrium of the system. This means that the effect is due to direct competition for the P-site, but not due to the indirect influence via the acceptor (A-) site. The inhibition was observed also in 30 S ribosomal subunits, therefore the puromycin binding site is situated far from the peptidyl transferase center. Quantitative measurements show that the affinity of puromycin for its new ribosomal binding site is similar to its affinity for the acceptor site of the peptidyl transferase center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号