首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histidine pK(a) values were measured in charge-reversal (K78E, K97E, K127E, and K97E/K127E) and charge-neutralization (E10A, E101A, and R35A) mutants of staphylococcal nuclease (SNase) by (1)H-NMR spectroscopy. Energies of interaction between pairs of charges (DeltaG(ij)) were obtained from the shifts in pK(a) values relative to wild-type values. The data describe the distance dependence and salt sensitivity of pairwise coulombic interactions. Calculations with a continuum electrostatics method captured the experimental DeltaG(ij) when static structures were used and when the protein interior was treated empirically with a dielectric constant of 20. The DeltaG(ij) when r(ij) < or = 10 A were exaggerated slightly in the calculations. Coulomb's law with a dielectric constant near 80 and a Debye-Hückel term to account for screening by the ionic strength reproduced the salt sensitivity and distance dependence of DeltaG(ij) as well as the structure-based method. In their interactions with each other, surface charges behave as if immersed in water; the Debye length describes realistically the distance where interactions become negligible at a given ionic strength. On average, charges separated by distances (r(ij)) approximately 5 A interacted with DeltaG(ij) approximately 0.6 kcal/mole in 0.01 M KCl, but DeltaG(ij) decayed to < or =0.10 kcal/mole when r(ij) = 20 A. In 0.10 M KCl, DeltaG(ij) approximately 0.10 kcal/mole when r(ij) = 10 A. In 1.5 M KCl, only short-range interactions with r(ij) < or = 5 A persisted. Although at physiological ionic strengths the interactions between charges separated by more than 10 A are extremely weak, in situations where charge imbalance exists many weak interactions can cumulatively produce substantial effects.  相似文献   

2.
3.
The effects of pH and electrolyte concentration on protein-protein interactions in lysozyme and chymotrypsinogen solutions were investigated by static light scattering (SLS) and small-angle neutron scattering (SANS). Very good agreement between the values of the virial coefficients measured by SLS and SANS was obtained without use of adjustable parameters. At low electrolyte concentration, the virial coefficients depend strongly on pH and change from positive to negative as the pH increases. All coefficients at high salt concentration are slightly negative and depend weakly on pH. For lysozyme, the coefficients always decrease with increasing electrolyte concentration. However, for chymotrypsinogen there is a cross-over point around pH 5.2, above which the virial coefficients decrease with increasing ionic strength, indicating the presence of attractive electrostatic interactions. The data are in agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO)-type modeling, accounting for the repulsive and attractive electrostatic, van der Waals, and excluded volume interactions of equivalent colloid spheres. This model, however, is unable to resolve the complex short-ranged orientational interactions. The results of protein precipitation and crystallization experiments are in qualitative correlation with the patterns of the virial coefficients and demonstrate that interaction mapping could help outline new crystallization regions.  相似文献   

4.
Complex coacervation in whey protein/gum arabic (WP/GA) mixtures was studied as a function of three main key parameters: pH, initial protein to polysaccharide mixing ratio (Pr:Ps)(ini), and ionic strength. Previous studies had already revealed under which conditions a coacervate phase was obtained. This study is aimed at understanding how these parameters influence the phase separation kinetics, the coacervate composition, and the internal coacervate structure. At a defined (Pr:Ps)(ini), an optimum pH of complex coacervation was found (pH(opt)), at which the strength of electrostatic interaction was maximum. For (Pr:Ps)(ini) = 2:1, the phase separation occurred the fastest and the final coacervate volume was the largest at pH(opt) = 4.0. The composition of the coacervate phase was determined after 48 h of phase separation and revealed that, at pH(opt), the coacervate phase was the most concentrated. Varying the (Pr:Ps)(ini) shifted the pH(opt) to higher values when (Pr:Ps)(ini) was increased and to lower values when (Pr:Ps)(ini) was decreased. This phenomenon was due to the level of charge compensation of the WP/GA complexes. Finally, the structure of the coacervate phase was studied with small-angle X-ray scattering (SAXS). SAXS data confirmed that at pH(opt) the coacervate phase was dense and structured. Model calculations revealed that the structure factor of WP induced a peak at Q = 0.7 nm(-1), illustrating that the coacervate phase was more structured, inducing the stronger correlation length of WP molecules. When the pH was changed to more acidic values, the correlation peak faded away, due to a more open structure of the coacervate. A shoulder in the scattering pattern of the coacervates was visible at small Q. This peak was attributed to the presence of residual charges on the GA. The peak intensity was reduced when the strength of interaction was increased, highlighting a greater charge compensation of the polyelectrolyte. Finally, increasing the ionic strength led to a less concentrated, a more heterogeneous, and a less structured coacervate phase, induced by the screening of the electrostatic interactions.  相似文献   

5.
Nonimmunospecific interactions of IgG and IgG-agarose columns were systematically studied under varying conditions. Nonimmunospecific binding to the columns was primarily due to protein-protein interactions. These nonimmunospecific protein-protein interactions of IgG were enhanced with heat-induced or chemical aggregation of IgG, low pH, low ionic strength (at pH above 4), or low temperature. Conversely, this binding was decreased with proteolytic fragmentation of IgG, high ionic strength (at pH above 4), or temperatures above 4 degrees C. Chemical modification of IgG by acetylation, formalinization, carbamylation, or reaction with 1,2-cyclohexanedione significantly decreased these interactions. These observations suggest that above pH 4, ionic interactions caused the protein-protein binding. Below pH 4, hydrophobic interactions presumably play a major role. These results permit the development of rational methodology for avoiding nonimmunospecific protein-protein interactions in immunologic procedures for detection, isolation, or quantification of rheumatoid factors and other antibodies to IgG.  相似文献   

6.
The interactions of partially unfolded proteins provide insight into protein folding and protein aggregation. In this work, we studied partially unfolded hen egg lysozyme interactions in solutions containing up to 7 M guanidinium chloride (GdnHCl). The osmotic second virial coefficient (B(22)) of lysozyme was measured using static light scattering in GdnHCl aqueous solutions at 20 degrees C and pH 4.5. B(22) is positive in all solutions, indicating repulsive protein-protein interactions. At low GdnHCl concentrations, B(22) decreases with rising ionic strength: in the absence of GdnHCl, B(22) is 1.1 x 10(-3) mLmol/g(2), decreasing to 3.0 x 10(-5) mLmol/g(2) in the presence of 1 M GdnHCl. Lysozyme unfolds in solutions at GdnHCl concentrations higher than 3 M. Under such conditions, B(22) increases with ionic strength, reaching 8.0 x 10(-4) mLmol/g(2) at 6.5 M GdnHCl. Protein-protein hydrodynamic interactions were evaluated from concentration-dependent diffusivity measurements, obtained from dynamic light scattering. At moderate GdnHCl concentrations, lysozyme interparticle interactions are least repulsive and hydrodynamic interactions are least attractive. The lysozyme hydrodynamic radius was calculated from infinite-dilution diffusivity and did not change significantly during protein unfolding. Our results contribute toward better understanding of protein interactions of partially unfolded states in the presence of a denaturant; they may be helpful for the design of protein refolding processes that avoid protein aggregation.  相似文献   

7.
We recently developed a theory for the rates of protein-protein association. The theory is based on the concept of a transition state, which separates the bound state, with numerous short-range interactions but restricted translational and rotational freedom, and the unbound state, with, at most, a small number of interactions but expanded configurational freedom. When not accompanied by large-scale conformational changes, protein-protein association becomes diffusion limited. The association rate is then predicted as k(a)=k(a)(0)exp(-DeltaG(el)(double dagger)/k(B)T), where DeltaG(el)(double dagger) is the electrostatic interaction free energy in the transition state, k(a)(0) is the rate in the absence of electrostatic interactions, and k(B)T is thermal energy. Here, this transition-state theory is used to predict the association rates of four protein complexes. The predictions for the wild-type complexes and 23 mutants are found to agree closely with experimental data over wide ranges of ionic strength.  相似文献   

8.
We report on the solvation properties and intermolecular interactions of a model protein (bovine serum albumine, BSA) in urea aqueous solutions, as obtained by combining small-angle neutron and X-ray scattering experiments. According to a global fit strategy, all the whole set of scattering curves are analysed by considering a unique model which includes the BSA structure, the protein-protein interactions and the thermodynamic exchange process of water/urea molecules at the protein solvent interface. As a main result, the equilibrium constant that accounts for the difference in composition between the bulk solvent and the protein solvation layer is derived. Results confirm that urea preferentially sticks to the protein surface, inducing a noticeable change in both the repulsive and the attractive interaction potentials.  相似文献   

9.
Electrostatic interactions between synthetic polyelectrolytes and proteins can lead to the formation of dense, macroion-rich liquid phases, with equilibrium microheterogeneities on length scales up to hundreds of nanometers. The effects of pH and ionic strength on the rheological and optical properties of these coacervates indicate microstructures sensitive to protein-polyelectrolyte interactions. We report here on the properties of coacervates obtained for bovine serum albumin (BSA) with the biopolyelectrolyte chitosan and find remarkable differences relative to coacervates obtained for BSA with poly(diallyldimethylammonium chloride) (PDADMAC). Coacervation with chitosan occurs more readily than with PDADMAC. Viscosities of coacervates obtained with chitosan are more than an order of magnitude larger and, unlike those with PDADMAC, show temperature and shear rate dependence. For the coacervates with chitosan, a fast relaxation time in dynamic light scattering, attributable to relatively unrestricted protein diffusion in both systems, is diminished in intensity by a factor of 3-4, and the consequent dominance by slow modes is accompanied by a more heterogeneous array of slow apparent diffusivities. In place of a small-angle neutron scattering Guinier region in the vicinity of 0.004 A-1, a 10-fold increase in scattering intensity is observed at lower q. Taken together, these results confirm the presence of dense domains on length scales of hundreds of nanometers to micrometers, which in coacervates prepared with chitosan are less solidlike, more interconnected, and occupy a larger volume fraction. The differences in properties are thus correlated with differences in mesophase structure.  相似文献   

10.
11.
Neutron scattering studies of nucleosome structure at low ionic strength   总被引:1,自引:0,他引:1  
Ionic strength studies using homogeneous preparations of chicken erythrocyte nucleosomes containing either 146 or 175 base pairs of DNA show a single unfolding transition at about 1.5 mM ionic strength as determined by small-angle neutron scattering. The transition seen by some investigators at between 2.9 and 7.5 mM ionic strength is not observed by small-angle neutron scattering in either type of nucleosome particle. The two contrasts measured (H2O and D2O) indicate that only small conformational changes occur in the protein core, but the DNA is partially unfolded below the transition point. Patterson inversion of the data and analysis of models indicate that the DNA in both types of particle is unwinding from the ends, leaving about one turn of supercoiled DNA bound to the histone core in approximately its normal (compact) conformation. The mechanism of unfolding appears to be similar for both types of particles and in both cases occurs at the same ionic strength. The unfolding observed for nucleosomes in this study is in definite disagreement with extended superhelical models for the DNA and also disagrees with models incorporating an unfolded histone core.  相似文献   

12.
The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The "melting" transition temperature was found to be 94 degrees C for 4% mass fraction DNA/d-water and 38 degrees C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 A across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains.  相似文献   

13.
The aggregation of meso-tetra(4-sulfonatophenyl)porphyrin (H(2)TPPS(4-)) in phosphate solutions was investigated as a function of pH, concentration, time, ionic strength, and solution preparation (either from dilution of a freshly prepared 2 mM stock or by direct preparation of μM solution concentrations) using a combination of complementary analytical techniques. UV-vis and fluorescence spectroscopy indicated the formation of staggered, side-by-side (J-type) assemblies. Their size and self-associative behavior were determined using analytical ultracentrifugation and small-angle X-ray scattering. Our results indicate that in neutral and basic solutions of H(2)TPPS(4-), porphyrin dimers and trimers are formed at micromolar concentrations and in the absence of NaCl to screen any ionic interactions. At these low concentrations and pH 4, the protonated H(4)TPPS(2-) species self-assembles, leading to the formation of particularly stable aggregates bearing 25 ± 3 macrocycles. At higher concentrations, these structures further organize or reorganize into tubular, rod-like shapes of various lengths, which were imaged by cryogenic and freeze-fracture transmission electron microscopy. Micron-scale fibrillar aggregates were obtained even at micromolar concentrations at pH 4 when prepared from dilution of a 2 mM stock solution, upon addition of NaCl, or both.  相似文献   

14.
The radii of gyration of unfolded apo-cytochrome C at pH 2.3 have been determined in three conditions: (i) 20 mM sodium phosphate buffer; (ii) 0.25 M NaCl; and (iii) 6.65 M GuHCl by small-angle X-ray scattering, and (iii) from translational diffusion coefficients measured by dynamic light scattering. The radius of gyration of the unfolded protein chain depends remarkably on the quality of the solvent, decreasing in the order 20 mM sodium phosphate greater than 6.65 M GuHCl greater than 0.25 M NaCl. The value of the radius of gyration in 0.25 M NaCl and also the value estimated for infinite ionic strength are close to the value predicted theoretically for the theta-point. This means that water in the absence of electrostatic interactions is a poor solvent for an unfolded protein while 6.65 M GuHCl is a better solvent.  相似文献   

15.
The structure of heat-set systems of the globular protein bovine serum albumin (BSA) was investigated at pH 7 in different salt conditions (NaCl or CaCl(2)) using light scattering. Cross-correlation dynamic light scattering was used to correct for multiple scattering from turbid samples. After heat treatment, aggregates are formed whose size increases as the protein concentration increases. Beyond a critical concentration that decreases with increasing salt concentration, gels are formed. The heterogeneity and the reduced turbidity of the gels were found to increase with increasing salt concentration and to decrease with increasing protein concentration. The structure of the gels is determined by the strength of the repulsive electrostatic interactions between the aggregated proteins. The results obtained in NaCl are similar to those reported in previous studies for other globular proteins. CaCl(2) was found to be much more efficient in reducing electrostatic interactions than NaCl at the same ionic strength.  相似文献   

16.
Liquid-liquid phase separation was studied for a monoclonal antibody in the monovalent salt solutions of KF, KCl, and KSCN under different pH conditions. A modified Carnahan-Starling hard-sphere model was utilized to fit the experimental data, establish the liquid-liquid coexistence curve, and determine antibody-antibody interactions in the form of Tc (critical temperature) under the different solution conditions. The liquid-liquid phase separation revealed the complex relationships between antibody-antibody interactions and different solution conditions, such as pH, ionic strength, and the type of anion. At pH 7.1, close to the pI of the antibody, a decrease of Tc versus ionic strength was observed at low salt conditions, suggesting that the protein-protein interactions became less attractive. At a pH value below the pI of the antibody, a nonmonotonic relationship of Tc versus ionic strength was apparent: initially as the ionic strength increased, protein-protein interactions became more attractive with the effectiveness of the anions following the inverse Hofmeister series; then the interactions became less attractive following the direct Hofmeister series. This nonmonotonic relationship may be explained by combining the charge neutralization by the anions, perhaps with the ion-correlation force for polarizable anions, and their preferential interactions with the antibody.  相似文献   

17.
Non-specific interactions in beta- and gamma-crystallins have been studied by solution X-ray scattering and osmotic pressure experiments. Measurements were carried out as a function of protein concentration at two ionic strengths. The effect of temperature was tested between 7 degrees C and 31 degrees C. Two types of interactions were observed. With beta-crystallin solutions, a repulsive coulombic interaction could be inferred from the decrease of the normalized X-ray scattering intensity near the origin with increasing protein concentration and from the fact that the osmotic pressure increases much more rapidly than in the ideal case. As was previously observed with alpha-crystallins, such behaviour is dependent upon ionic strength but is hardly affected by temperature. In contrast, with gamma-crystallin solutions, the normalized X-ray scattering intensity near the origin increases with increasing protein concentration and the osmotic pressure increases less rapidly than in the ideal case. Such behaviour indicates that attractive forces are predominant, although we do not yet know their molecular origin. Under our experimental conditions, the effect of temperature was striking whereas no obvious contribution of the ionic strength could be seen, perhaps owing to masking by the large temperature effect. The relevance of the different types of non-specific interactions for lens function is discussed.  相似文献   

18.
The structure of protein SI of Thermus thermophilus (M = 61 kDa) in solution at low and moderate ionic strengths (0 M and 100 mM NaCl, respectively) has been studied by small-angle X-ray and neutron scattering. It was found that protein S1 has a globular conformation under both ionic conditions. The modelling of different packing of six homologous domains of S1 on the basis of the NMR-resolved structure of one domain showed that the best fit of calculated scattering patterns from such complexes to experimental ones is observed at a compact package of the domains. The calculated value of the radius of gyration of the models is 28-29 angtroms, which is characteristic for globular proteins with a molecular mass of about 60 kDa. It was found that protein S1 has a tendency to form associates, and the type of the associate depends on ionic strength. These associates have, in general, two or three monomers at a moderate ionic strength, while at a low ionic strength the number of monomers exceeds three and they are packed in a compact manner. Strongly elongated associates were observed in neutron experiments at a moderate ionic strength in heavy water. The association of protein molecules was also confirmed by the data of dynamic light scattering. From these data, the translational diffusion coefficient of protein S1 at a moderate ionic strength was calculated to be (D20,w = (2.7 +/- 0.1) x 10(-7)cm2/s). This value is essentially smaller than the expected value (D20,w = (5.8 - 6.0) x 10(-7)cm2/s) for the S1 monomer in the globular conformation, indicating the association of protein molecules under equilibrium conditions.  相似文献   

19.
RNA is involved in a broad range of biological processes that extend far beyond translation. Many of RNA’s recently discovered functions rely on folding to a specific conformation or transitioning between conformations. The RNA structure contains rigid, short basepaired regions connected by more flexible linkers. Studies of model constructs such as small helix-junction-helix (HJH) motifs are useful in understanding how these elements work together to determine RNA conformation. Here, we reveal the full ensemble of solution structures assumed by a model RNA HJH. We apply small-angle x-ray scattering and an ensemble optimization method to selectively refine models generated by all-atom molecular dynamics simulations. The expectation of a broad distribution of helix orientations, at and above physiological ionic strength, is not met. Instead, this analysis shows that the HJH structures are dominated by two distinct conformations at moderate to high ionic strength. Atomic structures, selected from the molecular dynamics simulations, reveal strong base-base interactions in the junction that critically constrain the conformational space available to the HJH molecule and lead to a surprising re-extension at high salt. These results are corroborated by comparison with previous single-molecule fluorescence resonance energy transfer experiments on the same constructs.  相似文献   

20.
The purpose of this work was to establish ultrasonic storage modulus (G') as a novel parameter for characterizing protein-protein interactions (PPI) in high concentration protein solutions. Using an indigenously developed ultrasonic shear rheometer, G' for 20-120 mg/ml solutions of a monoclonal antibody (IgG(2)), between pH 3.0 and 9.0 at 4 mM ionic strength, was measured at frequency of 10 MHz. Our understanding of ultrasonic rheology indicated decrease in repulsive and increase in attractive PPI with increasing solution pH. To confirm this behavior, dynamic (DLS) and static (SLS) light scattering measurements were conducted in dilute solutions. Due to technical limitations, light scattering measurements could not be conducted in concentrated solutions. Mutual-diffusion coefficient, measured by DLS, increased with IgG(2) concentration at pH 4.0 and this trend reversed as pH was increased to 9.0. Second virial coefficient, measured by SLS, decreased with increasing pH. These observations were consistent with the nature of PPI understood from G' measurements. Ultrasonic rheology, DLS, and SLS measurements were also conducted under conditions of increased ionic strength. The consistency between rheology and light scattering analysis under various solution conditions established the utility of ultrasonic G' measurements as a novel tool for analyzing PPI in high protein concentration systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号