首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calpactin I complex, a calcium-dependent phospholipid-binding protein, promotes aggregation of chromaffin vesicles at physiological micromolar calcium ion levels. Calpactin I complex was found to be a globular molecule with a diameter of 10.7 +/- 1.7 (SD) nm on mica. When liposomes were aggregated by calpactin, quick-freeze, deep-etching revealed fine thin strands (6.5 +/- 1.9 [SD] nm long) cross-linking opposing membranes in addition to the globules on the surface of liposomes. Similar fine strands were also observed between aggregated chromaffin vesicles when they were mixed with calpactin in the presence of Ca2+ ion. In cultured chromaffin cells, similar cross-linking short strands (6-10 nm) were found between chromaffin vesicles and the plasma membrane after stimulation with acetylcholine. Plasma membranes also revealed numerous globular structures approximately 10 nm in diameter on their cytoplasmic surface. Immunoelectron microscopy on frozen ultrathin sections showed that calpactin I was closely associated with the inner face of the plasma membranes and was especially conspicuous between plasma membranes and adjacent vesicles in chromaffin cells. These in vivo and in vitro data strongly suggest that calpactin I complex changes its conformation to cross-link vesicles and the plasma membrane after stimulation of cultured chromaffin cells.  相似文献   

2.
The release of intercellular contacts in MDBK cells, initiated by the depletion of Ca2+ ions from the culture medium, results in the endocytotic uptake of membrane vesicles containing specific membrane constituents of the zonula adhaerens (ZA). During this process the junction-derived, endocytosed vesicles remain associated with the ZA plaque components, while the plaque and its attached actin filaments retract as a whole in a ring-like fashion from the plasma membrane, often accumulating, usually in fragments, in the juxtanuclear cytoplasm. Double-label immunofluorescence microscopy with antiplakoglobin and antivinculin has indicated that both plaque proteins colocalize with the hallmark membrane glycoprotein of this junction type, E-cadherin (uvomorulin). When HRP used as a fluid phase marker is applied to the culture medium, simultaneously with the Ca2+ ion-chelator EGTA, numerous HRP-positive vesicles are found in close association with the dislocated plaque material, suggesting that the HRP is contained in the vesicles formed upon EGTA-induced junction splitting. Immunoelectron microscopy with various cadherin-specific antibodies revealed vesicle-associated labeling, confirming the derivation of these plaque-associated vesicles from the ZA. As the desmosome-specific cadherin, desmoglein, is recovered in another type of junction-derived vesicle, which is characterized by its association with a desmoplakin-plaque, we conclude that the membrane domains of both kinds of junction are endocytosed during Ca2+ depletion but stay in different vesicle populations, emphasizing the selective interaction of the specific cadherins with their respective plaque and filament partners.  相似文献   

3.
Dallai R  Lupetti P  Lane NJ 《Tissue & cell》1996,28(5):603-612
Cultures of the rotifer Brachionus plicatilis were examined with regard to their interepithelial junctions after infiltration with the extracellular tracer lanthanum, freeze-fracturing or quick-freeze deepetching. The lateral borders between ciliated cells have an unusual apical adhering junction. This apical part of their intercellular cleft looks desmosome-like, but it is characterized by unusual intramembranous E-face clusters of particles. Deep-etching reveals that these are packed together in short rows which lie parallel to one another in orderly arrays. The true membrane surface in these areas features filaments in the form of short ribbons; these are produced by projections, possibly part of the glycocalyx, emerging from the membranes, between which the electron-dense tracer lanthanum permeates. These projections appear to overlap with each other in the centre of the intercellular cleft; this would provide a particularly flexible adaptation to maintain cell-cell contact and coordination as a consequence. The filamentous ribbons may be held in position by the intramembranous particle arrays since both have a similar size and distribution. These contacts are quite different from desmosomes and appear to represent a distinct new category of adhesive cell-cell junction. Beneath these novel structures, conventional pleated septate junctions are found, exhibiting the undulating intercellular ribbons typical of this junctional type, as well as the usual parallel alignments of intramembranous rows of EF grooves and PF particles. Below these are found gap junctions as close-packed plaques of intramembranous particles on either the P-face or E-face. After freeze-fracturing, the complementary fracture face to the particles shows pits, usually on the P-face, arrayed with a very precise hexagonal pattern.  相似文献   

4.
A role for adhesion molecules in gamete fusion, preceding fertilization, has been previously suggested. We investigated the presence of cadherins, Ca(2+) dependent cell-cell adhesion molecules, in rat oocytes and spermatozoa using an anti-pan-cadherin antibody and specific antibodies against the 3 classical cadherins: E- (epithelial), P- (placental), and N- (neural) cadherins. Electrophoretic separation was performed on samples of lysed oocytes of different stages: germinal vesicle oocytes, metaphase II eggs, newly fertilized and 2-cell embryos, as well as spermatozoa from testes, caput and cauda epididymis and ejaculate. Localization of cadherins was determined on intact, gametes by immunocytochemistry, using confocal microscopy. Immunoblotting with the pan-cadherin antibody revealed a major band of approximately 120 kD in all oocyte and sperm extracts. Oocytes presented E-cadherin at appropriate molecular weight but N-cadherin only as a specific 40 kD band. In sperm lysate, at all stages, both E- and N-cadherin were demonstrated as major protein bands but a series of lower molecular weight proteins (that may represent protein degradation) were also detected. Immunohistochemical evaluation showed that E- and N-cadherins are already present on the plasma membrane of immature unfertilized oocytes, although their concentration increases after fertilization in early cleavage stage embryos. Cadherin localization on spermatozoa changed during maturation from a dispersed pattern over the entire head plasma membrane of testicular spermatozoa to a restricted equatorial and post-acrosomal plasma membrane staining in ejaculated spermatozoa. These findings suggest a specific cadherin organization at the fusogenic domains of both gametes.  相似文献   

5.
The ultrastructure of natural complex biofilm communities of the Elbe river grown in situ on microscopic glass coverslips was studied by using transmission electron microscopy and energy-dispersive x-ray (EDX) analysis. Characteristic microcolonies which measured between 3.3 and 9.3 microm in diameter were frequently observed. They had an outer envelope and harbored 6 to 30 cells. The cells formed short rods measuring 1.09 +/- 0.28 microm (n = 10) in length and 0.55 + 0.07 microm (n = 21) in width. They were surrounded by a thick layer of electron-transparent, nonosmicated matter, 120 to 300 nm thick. Individual cells exhibited a unique ultrastructural trait, namely, a concentric membrane stack which completely surrounded the cytoplasm. It consisted of three membrane doublets, which showed an overall thickness of 57 to 66 nm. The center-to-center spacing between two membrane doublets was 22.2 +/- 1.0 nm (n = 12). The bacterial cell wall seemed to be of the gram-negative type. The fact that upon shrinkage hexagonal clefts appeared proved the cells to be tightly packed, and septum formation by binary fissions was observed. All of these morphological details indicate that the cells within these microcolonies were actively growing and did not represent spore-like states. EDX analysis showed that only the electron-dense surface deposit of the microcolonies contained Mn and Fe in significant amounts, while these two elements were absent from the intercellular space and the cytoplasm of the microorganisms. In contrast, aluminum ions were able to penetrate the outer envelope of the microcolonies and were detected in the intercellular space. They were, however, completely absent from the microbial cytoplasm, indicating a filter cascade with respect to aluminum. From the ultrastructural data together with the deposition of iron and manganese on the microcolony surface, it appears that these organisms may belong to the genus Siderocapsa or Nitrosomonas. They do not precisely match any of the described species and may therefore represent a new species.  相似文献   

6.
The extracellular surface of the gap junction cell-to-cell channels was imaged in phosphate-buffered saline with an atomic force microscope. The fully hydrated isolated gap junction membranes adsorbed to mica were irregular sheets approximately 1-2 microns across and 13.2 (+/- 1.3) nm thick. The top bilayer of the gap junction was dissected by increasing the force applied to the tip or sometimes by increasing the scan rate at moderate forces. The exposed extracellular surface revealed a hexagonal array with a center-to-center spacing of 9.4 (+/- 0.9) nm between individual channels (connexons). Images of individual connexons with a lateral resolution of < 3.5 nm, and in the best case approximately 2.5 nm, were reliably and reproducibly obtained with high-quality tips. These membrane channels protruded 1.4 (+/- 0.4) nm from the extracellular surface of the lipid membrane, and the atomic force microscope tip reached up to 0.7 nm into the pore, which opened up to a diameter of 3.8 (+/- 0.6) nm on the extracellular side.  相似文献   

7.
Photoreceptor discs are membrane organelles harboring components of the visual signal transduction pathway. The mechanism by which discs form remains enigmatic and is the subject of a major controversy. Classical studies suggest that discs are formed as serial plasma membrane evaginations, whereas a recent alternative postulates that discs, at least in mammalian rods, are formed through intracellular vesicular fusion. We evaluated these models in mouse rods using methods that distinguish between the intracellular vesicular structures and plasma membrane folds independently of their appearance in electron micrographs. The first differentiated membranes exposed to the extracellular space from intracellular membranes; the second interrogated the orientation of protein molecules in new discs. Both approaches revealed that new discs are plasma membrane evaginations. We further demonstrated that vesiculation and plasma membrane enclosure at the site of new disc formation are artifacts of tissue fixation. These data indicate that all vertebrate photoreceptors use the evolutionary conserved membrane evagination mechanism to build their discs.  相似文献   

8.
Extracellular vesicles are heterogenous, nano-sized, membrane-limited structures which not only represent a specific way of intercellular communication but also endow cells with many capabilities. Apoptotic bodies created during apoptosis, microvesicles shed from the plasma membrane, and exosomes originated inside the cell and released to extracellular space upon fusion with the plasma membrane, they all belong to extracellular vesicles. Extracellular vesicles contain lipids, proteins, and nucleic acids. In this review, we describe their biogenesis, release and uptake by recipient cells, their composition, functions and potential therapeutic and diagnostic applications.  相似文献   

9.
Using serial-section transmission electron microscopy and three-dimensional (3D) electron tomography, we characterized membrane dynamics that accompany the construction of a nuclear exchange junction between mating cells in the ciliate Tetrahymena thermophila. Our methods revealed a number of previously unknown features. (i) Membrane fusion is initiated by the extension of hundreds of 50-nm-diameter protrusions from the plasma membrane. These protrusions extend from both mating cells across the intercellular space to fuse with membrane of the mating partner. (ii) During this process, small membrane-bound vesicles or tubules are shed from the plasma membrane and into the extracellular space within the junction. The resultant vesicle-filled pockets within the extracellular space are referred to as junction lumens. (iii) As junction lumens fill with extracellular microvesicles and swell, the plasma membrane limiting these swellings undergoes another deformation, pinching off vesicle-filled vacuoles into the cytoplasm (reclamation). (iv) These structures (resembling multivesicular bodies) seem to associate with autophagosomes abundant near the exchange junction. We propose a model characterizing the membrane-remodeling events that establish cytoplasmic continuity between mating Tetrahymena cells. We also discuss the possible role of nonvesicular lipid transport in conditioning the exchange junction lipid environment. Finally, we raise the possibility of an intercellular signaling mechanism involving microvesicle shedding and uptake.  相似文献   

10.
Desmosomal cadherins mediate intercellular adhesion and control epithelial homeostasis. Recent studies show that proteinases play an important role in the pathobiology of cancer by targeting epithelial intercellular junction proteins such as cadherins. Here we describe the proinflammatory cytokine-induced activation of matrix metalloproteinase 9 and a disintegrin and metalloproteinase domain–containing protein 10, which promote the shedding of desmosomal cadherin desmoglein-2 (Dsg2) ectodomains in intestinal epithelial cells. Epithelial exposure to Dsg2 ectodomains compromises intercellular adhesion by promoting the relocalization of endogenous Dsg2 and E-cadherin from the plasma membrane while also promoting proliferation by activation of human epidermal growth factor receptor 2/3 signaling. Cadherin ectodomains were detected in the inflamed intestinal mucosa of mice with colitis and patients with ulcerative colitis. Taken together, our findings reveal a novel response pathway in which inflammation-induced modification of columnar epithelial cell cadherins decreases intercellular adhesion while enhancing cellular proliferation, which may serve as a compensatory mechanism to promote repair.  相似文献   

11.
V S Orlov 《Biofizika》1986,31(3):486-491
Blood plasma proteins adsorption on a capillar endoteliocyte membrane surface can be accompanied by the formation of protein clusters. Their superficial protein density is about 10(16) protein globules per m2. The surface density of free energy of such protein layer in a cluster is estimated according to total energy of individual protein globules hydrophobic contribution, and its value is approximately 5 mJ X m-2. It is identical to local variation quantity of the membrane free energy. An alternation of the free surface energy must lead to the appearance of chemically induced and bending moments and to the membrane distortion accompanied by the caveole forming. The blood hydrostatic pressure in capillar lumen (approximately 33 X 10(2)N X m-2) creates the membrane isotropic tension which is proportional to its value and to caveole radius. The latter according to Laplas' equation closes the caveole into the vesicula with the radius approximately 40 nm. The transport of free vesicula by cytoplasmic currents to the basal surface of an endoteliocyte results in exocytosis (which proceeds approximately 0.1 s) with a release of the vesicula surface free energy (approximately 10(-16) J). The capillar endotelium vesicular transport is the indivisible endocytosis-exocytosis process characterized by "the turnover" of the cell plasmic membrane matter without its loss.  相似文献   

12.
Calreticulin, a protein best known as an endoplasmic reticulum chaperone, also is found on the extracellular plasma membrane surface of many cell types where it serves as a mediator of adhesion and as a regulator of the immune response. In this report, we demonstrate that calreticulin is present on the extracellular surface of the mouse egg plasma membrane and is increased in the perivitelline space after egg activation. The extracellular calreticulin appears to be secreted by vesicles in the egg cortex that are distinct from cortical granules. An anticalreticulin antibody binds to extracellular calreticulin on live eggs and inhibits sperm-egg binding but not fusion. In addition, engagement of cell surface calreticulin by incubation of mouse eggs in the presence of anticalreticulin antibodies results in alterations in the localization of cortical actin and the resumption of meiosis as indicated by alterations in chromatin configuration, decreases in cdc2/cyclin B1 and MAP kinase activities, and pronuclear formation. These events occur in the absence of any observable alterations in intercellular calcium. These data demonstrate that calreticulin functionally interacts with the egg cytoskeleton and can mediate transmembrane signaling linked to cell cycle resumption. These studies suggest a role for calreticulin as a lectin that may be involved in signal transduction events during or after sperm-egg interactions at fertilization.  相似文献   

13.
The desmosomal cadherins, desmogleins, and desmocollins mediate strong intercellular adhesion. Human intestinal epithelial cells express the desmoglein-2 isoform. A proteomic screen for Dsg2-associated proteins in intestinal epithelial cells identified a lectin referred to as galectin-3 (Gal3). Gal3 bound to N-linked β-galactosides in Dsg2 extracellular domain and co-sedimented with caveolin-1 in lipid rafts. Down-regulation of Gal3 protein or incubation with lactose, a galactose-containing disaccharide that competitively inhibits galectin binding to Dsg2, decreased intercellular adhesion in intestinal epithelial cells. In the absence of functional Gal3, Dsg2 protein was internalized from the plasma membrane and degraded in the proteasome. These results report a novel role of Gal3 in stabilizing a desmosomal cadherin and intercellular adhesion in intestinal epithelial cells.  相似文献   

14.
Regional differentiation of the plasma membrane and related structures of the exocrine pancreas has been studied ultrastructurally and cytochemically. Fixation with an osmium tetroxide-silver acetate solution produced abundant fine precipitates on the luminal and basal surface of the centroacinar but not the acinar cells. Staining with dialyzed iron (DI) revealed the heaviest concentration of anionic sites on the luminal plasma membrane of the acinar cells, including the surface of both the intercellular canaliculi and the main lumen. The reactive sites on the apical acinar plasmalemma appeared to consist of discrete globules. DI-reactivity of the lateral basal membranes was most prominent in the centroacinar cells and essentially absent in the acinar cells but was weak relative to that of the acinar-cell apical plasmalemma. The lamina lucida of the basement membrane of the duct stained with DI, but that of basement membrane under acinar cells did not. Sialidase digestion prior to DI staining abolished the staining of plasma membranes. These results indicate that duct epithelial cells, including most prominently the centroacinar cells, are chiefly responsible for electrolyte and fluid transport.  相似文献   

15.
The ultrastructure of the parathyroid glands of adult Japanese lizards (Takydromus tachydromoides) in the spring and summer season was examined. The parenchyma of the gland consists of chief cells arranged in cords or solid masses. Many chief cells contain numerous free ribosomes and mitochondria, well-developed Golgi complexes, a few lysosome-like bodies, some multivesicular bodies and relatively numerous lipid droplets. The endoplasmic reticulum is mainly smooth-surfaced. Cisternae of the rough endoplasmic reticulum are distributed randomly in the cytoplasm. Small coated vesicles of 700-800 Å in diameter are found occasionally in the cytoplasm, especially in the Golgi region. The chief cells contain occasional secretory granules of 150-300 nm in diameter that are distributed randomly in the cytoplasm and lie close to the plasma membrane. Electron dense material similar to the contents of the secretory granules is observed in the enlarged intercellular space. These findings suggest that the secretory granules may be discharged into the intercellular space by an eruptocrine type of secretion. Coated vesicles (invaginations) connected to the plasma membrane and smooth vesicles arranged in a row near the plasma membrane are observed. It is suggested that such coated vesicles may take up extracellular proteins. The accumulation of microfilaments is sometimes recognized. Morphological evidence of synthetic and secretory activities in the chief cells suggests active parathyroid function in the Japanese lizard during the spring and summer season.  相似文献   

16.
Cell junctions and the extracellular matrix (ECM) are crucial components in intercellular communication. These systems are thought to have become highly diversified during the course of vertebrate evolution. In the present study, we have examined whether the ancestral chordate already had such vertebrate systems for intercellular communication, for which we have searched the genome of the ascidian Ciona intestinalis. From this molecular perspective, the Ciona genome contains genes that encode protein components of tight junctions, hemidesmosomes and connexin-based gap junctions, as well as of adherens junctions and focal adhesions, but it does not have those for desmosomes. The latter omission is curious, and the ascidian type-I cadherins may represent an ancestral form of the vertebrate type-I cadherins and desmosomal cadherins, while Ci-Plakin may represent an ancestral protein of the vertebrate desmoplakins and plectins. If this is the case, then ascidians may have retained ancestral desmosome-like structures, as suggested by previous electron-microscopic observations. In addition, ECM genes that have been regarded as vertebrate-specific were also found in the Ciona genome. These results suggest that the last common ancestor shared by ascidians and vertebrates, the ancestor of the entire chordate clade, had essentially the same systems of cell junctions as those in extant vertebrates. However, the number of such genes for each family in the Ciona genome is far smaller than that in vertebrate genomes. In vertebrates these ancestral cell junctions appear to have evolved into more diverse, and possibly more complex, forms, compared with those in their urochordate siblings.  相似文献   

17.
Surfaces of rod photoreceptor disk membranes: integral membrane components   总被引:8,自引:4,他引:4  
The membrane surfaces within the rod outer segment of the toad, Bufo marinus, were exposed by rapid-freezing followed by freeze-fracture and deep-etching. Platinum-carbon replicas of disk membranes prepared in this way demonstrate a distinct sidedness. The membrane surface that faces the lumen of the disk shows a fine granularity; particles of approximately 6 nm are packed at a density of approximately 30,000/micron 2. These dimensions suggest that the particles represent protrusions of the integral membrane protein, rhodopsin, into the intradisk space. In addition, when rhodopsin packing is intentionally perturbed by exhaustive digestion with phospholipase C, a concomitant change is observed in the appearance of the luminal surface granularity. The cytoplasmic surface of the disk rarely displays this rough texture; instead it exhibits a collection of much larger particles (8-12 nm) present at approximately 10% of the concentration of rhodopsin. This is about the size and concentration expected for certain light-regulated enzymes, cGMP phosphodiesterase and GTP-binding protein, which are currently thought to localize on or near the cytoplasmic surface of the disk. The molecular identity of the 8-12-nm particles will be identified in the following companion paper. A further differentiation of the cytoplasmic surface can be seen around the very edge, or rim, of each disk. This rim has relatively few 8-12- nm particles and instead displays short filamentlike structures connecting it to other membranes. These filaments extend between adjacent disks, across disk incisures, and from disk rims to the nearby plasma membrane.  相似文献   

18.
Membrane specializations of the contact region between afferent nerve endings and supporting cells of the sensory epithelia of guinea-pig vestibular endorgans were examined by thin-section and freeze-fracture electron microscopy. The calyx-type nerve endings (C-endings) are separated from supporting cells (SC) by a 25-30 nm space. At irregular intervals along the upper lateral surface of supporting cells, the intercellular space narrows markedly to form special close contacts between the C-ending and SC plasma membranes. Freeze-fracture replicas reveal membrane specializations--orthogonal arrays of particulate units--in the region where the close intercellular contacts were found in sections. Orthogonal arrays consisting of from 5 to 20 units were observed on the cytoplasmic (P) fracture face of the lateral SC plasma membrane. These particulate units from a 12 x 12-nm square, and each unit is composed of four 6-nm subunits. Possible roles of the orthogonal arrays are discussed.  相似文献   

19.
Numerous tubular structures were observed in the surface region of smooth muscle cells making up the vascular walls in the lamprey, Lampetra japonica; they were designated as surface tubules. The limiting membrane of the surface tubules was connected to the plasma membrane, allowing communication of the lumen of the tubule with the extracellular space. Tannic acid reacted with osmium, serving as an extracellular marker, penetrated into the tubules but not into the intracellular organelles, such as the endoplasmic reticulum and the Golgi complex. The surface tubules were grouped in longitudinal parallel rows, separated from each other by tubule-free areas where dense plaques were present. Each tubule was fairly cylindrical (approximately 60 nm in diameter) and often ramified into two or three branches with a blind end. Occasionally, these tubules were encircled by the sarcoplasmic reticulum which was located immediately beneath the plasma membrane. Similar tubules were also observed in the surface region of vascular endothelial cells and fibroblasts in the adventitial connective tissue. The possibility that the surface tubules in the present observations are analogous to the smooth muscle caveolae or the striated muscle T-tubule is discussed.  相似文献   

20.
Cadherins are a family of integral membrane glycoproteins that mediate homophilic, calcium-dependent cell adhesion in vertebrate species. The primary structures of six members of the cadherin family have recently been determined. The extracellular portion of these proteins is composed of five domains, the first of which is the most highly conserved among cadherins. Previous searches of protein sequence databases have revealed little or no sequence homology between cadherins and other proteins. Here we report that the first extracellular domain of cadherins exhibits substantial sequence homology with the amino termini of influenza strain A hemagglutinins. These regions of sequence homology have been shown to be functionally important in both cadherins and hemagglutinins. Our observations suggest that a functional domain of cadherins is conserved among other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号