首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of simulated microgravity (clinostat rotation at 6 rpm) on the presumptive ectodermal cells of amphibian embryos were examined. When morulae of Cynops pyrrhogaster developed under the influence of simulated microgravity, the thickness of the presumptive ectoderm was greater significantly. Embryonic cells isolated from the presumptive ectoderm of morulae were cultured for one day under the influence of simulated microgravity. The number of cells was greater after such clinostat rotation than in the control culture. TUNEL staining and electron microscopy revealed apoptotic cells both in embryos and among cultured cells, but the number of apoptotic cells was smaller in clinostat-treated embryos and cultured cells than in their controls. These results suggest that simulated microgravity suppresses apoptosis in the amphibian embryo, and as a result, affects the thickness of the presumptive ectoderm.  相似文献   

2.
We sought to develop a practical and representative model to study the interactions of enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) with human intestinal tissue. For this purpose, human intestinal epithelial HCT-8 cells were cultured under low-shear microgravity conditions in a rotating cell culture system. After 10 days, layered cell aggregates, or 'organoids', developed. Three lines of evidence indicated that these organoids exhibited traits characteristic of normal tissue. First, the organoids expressed normal intestinal tissue markers in patterns that suggested greater cellular differentiation in the organoids than conventionally grown monolayers. Second, the organoids produced higher levels of intestinally expressed disaccharidases and alkaline phosphatase on a cell basis than did conventionally cultured monolayers. Third, HCT-8 organoid tissue developed microvilli and desmosomes characteristic of normal tissue, as revealed by electron microscopy. Because the low-shear microgravity condition is proposed by modelling studies to more closely approximate conditions in the intestinal microvilli, we also tested the impact of microgravity of bacterial growth and virulence gene expression. No influence on growth rates was observed but intimin expression by EHEC was elevated during culture in microgravity as compared with normal gravity. That the responses of HCT-8 organoids to infection with wild-type EPEC or EHEC under microgravitational conditions approximated infection of normal tissue was demonstrated by the classical appearance of the resultant attaching and effacing lesions. We concluded that the low shear microgravity environment promoted growth of intestinal cell organoids with greater differentiation than was seen in HCT-8 cells maintained in conventional tissue culture and provided a reduced gravity environment for study of bacterial-host cell interactions.  相似文献   

3.
目的:构建模拟微重力条件下PC12细胞的培养体系,探讨模拟微重力对PC12细胞衰老的影响。方法:用Cytodex-3型微载体作为PC12细胞的贴附载体,旋转细胞培养系统所提供10-2g的微重力环境进行模拟微重力条件下的细胞培养。在倒置显微镜下观察PC12细胞的生长情况;用扫描电镜观察PC12细胞超微结构的变化;衰老相关β半乳糖苷酶(SA-β-gal)特异性染色对衰老的PC12细胞进行评估。结果:光镜下模拟微重力培养的PC12细胞表现出类衰老细胞的形态,扫描电子显微镜下观察发现其微绒毛增多。SA-β-gal染色的结果显示在模拟微重力的作用下,PC12细胞SA-β-gal的活性升高。结论:模拟微重力可以引起PC12细胞衰老样的形态变化,以及SA-β-gal的活性升高。  相似文献   

4.

Background

Growing cells in simulated weightlessness condition might be a highly promising new technique to maintain or generate tissue constructs in a scaffold-free manner. There is limited evidence that microgravity condition may affect development of ovarian follicles. The objective of the present study was to investigate the effects of simulated microgravity on the in vitro development of mouse preantral follicles.

Methods and Results

Ovarian tissue from 14-day-old mice, or preantral follicles mechanically isolated from 14-day-old mouse ovaries were cultured at a simulated microgravity condition generated using a rotating wall vessel apparatus. Follicle survival was assessed quantitatively using H&E staining. Follicle diameter and oocyte diameter were measured under an inverted microscope. Ultrastructure of oocytes was evaluated using transmission electron microscopy. We observed that simulated microgravity compromised follicle survival in vitro, downregulated PCNA and GDF-9 expressions, and caused ultrastructural abnormalities in oocytes.

Conclusion

This study showed for the first time that three-dimensional culture condition generated by simulated microgravity is detrimental to the initial stage development of mouse preantral follicles in vitro. The experimental setup provides a model to further investigate the mechanisms involved in the in vitro developmental processes of oocytes/granulosa cells under the microgravity condition.  相似文献   

5.
We investigated the influence of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells (MSCs). During chondrogenic induction, MSCs combined with polyglycolic acid (PGA) were cultured by static culture or microgravity rotating culture and chondrocyte formation was confirmed by toluidine blue staining. Furthermore, the mRNA and protein expressions of a specific cartilage extracellular matrix protein (collagen type II and Aggrecan) were evaluated by real-time RT-PCR and western blot, respectively. Toluidine blue staining indicated the OD values of proteoglycans semi-determination were higher in the microgravity rotating culture group than the static culture group. Following chondrogenic induction, mRNA and proteins of collagen type II and Aggrecan were more significantly expressed in cells of the microgravity rotating culture group compared with the controls. Compared with routine three-dimensional static culture, the microgravity rotating culture system was more effective for the construction of tissue-engineered cartilage in vitro.  相似文献   

6.
目的:构建模拟微重力条件下PC12细胞的培养体系,探讨模拟微重力对PC12细胞衰老的影响。方法:用Cytodex-3型微载体作为PC12细胞的贴附载体,旋转细胞培养系统所提供10-2g的微重力环境进行模拟微重力条件下的细胞培养。在倒置显微镜下观察PC12细胞的生长情况;用扫描电镜观察PC12细胞超微结构的变化;衰老相关β半乳糖苷酶(SA-β-gal)特异性染色对衰老的PC12细胞进行评估。结果:光镜下模拟微重力培养的PC12细胞表现出类衰老细胞的形态,扫描电子显微镜下观察发现其微绒毛增多。SA-β-gal染色的结果显示在模拟微重力的作用下,PC12细胞SA-β-gal的活性升高。结论:模拟微重力可以引起PC12细胞衰老样的形态变化,以及SA-β-gal的活性升高。  相似文献   

7.
The aim of this study was to determine the optimal conditions (effect of culture time before and after cryopreservation) for cryopreservation of specific pathogen-free pig islet cells. METHODS: (1) Glucose-induced insulin secretion by fresh islet cells cultured for 10 days was compared to that by islet cells cryopreserved 7 days after isolation and cultured 3 days after thawing. (2) Islet cells were cryopreserved 1, 7, or 14 days after isolation and cultured 3, 7, 14, or 21 days after thawing. Islet cell number, insulin content, and insulin response under perifusion tests were investigated. RESULTS: (1) Insulin response by cryopreserved islet cells was identical to that by fresh islet cells (basal/stimulation index: 2. 13 +/- 0.19 vs 2.17 +/- 0.16, n = 4, NS), although the amount of secreted insulin was reduced by 40% (area under the curve: 2136 +/- 198 pM/10(4) cells/180 min vs 3564 +/- 636 pM/10(4) cells/180 min, P = 0.104). (2) Cell number 6 days after thawing was reduced by 54, 40, and 63% when cryopreservations were carried out at D1, D7, and D14. (3) Insulin content in cultured or cryopreserved islet cells increased between 7 and 14 days of culture. (4) Whatever the culture time before and after cryopreservation, insulin secretion in response to glucose was maintained. The insulin release was the highest for islet cells cryopreserved 14 days after isolation and cultured 14 days after thawing (stimulation index: 6.19 +/- 2.68). CONCLUSIONS: SPF pig islet cells remained functional after cryopreservation in polyethylene glycol and it may be important to culture islet cells over 14 days before and after cryopreservation.  相似文献   

8.
The present studies were designed to determine effects of a microgravity model system upon lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNF-alpha) activity and indexes of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1,726 +/- 117, 150 islet equivalent units) from Wistar-Furth rats were treated as 1) high aspect ratio vessel (HARV) cell culture, 2) HARV plus LPS, 3) static culture, and 4) static culture plus LPS. TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures; yet the increase was more pronounced in the static culture group (P < 0.05). A decrease in insulin concentration was demonstrated in the LPS-stimulated HARV culture (P < 0.05). We observed a greater glucose concentration and increased disappearance of arginine in islets cultured in HARVs. Although nitrogenous compound analysis indicated a ubiquitous reliance on glutamine in all experimental groups, arginine was converted to ornithine at a twofold greater rate in the islets cultured in the HARV microgravity model system (P < 0.05). These studies demonstrate alterations in LPS-induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV. These alterations in fuel homeostasis may be promulgated by gravity-averaged cell culture methods or by three-dimensional cell assembly.  相似文献   

9.
The purpose of this study was to assess whether simulated conditions of microgravity induce changes in the production of progesterone by luteal cells of the pregnant rat ovary using an in vitro model system. The microgravity environment was simulated using either a high aspect ratio vessel (HARV) bioreactor with free fall or a clinostat without free fall of cells. A mixed population of luteal cells isolated from the corpora lutea of day 8 pregnant rats was attached to cytodex microcarrier beads (cytodex 3). These anchorage dependent cells were placed in equal numbers in the HARV or a spinner flask control vessel in culture conditions. It was found that HARV significantly reduced the daily production of progesterone from day 1 through day 8 compared to controls. Scanning electron microscopy showed that cells attached to the microcarrier beads throughout the duration of the experiment in both types of culture vessels. Cells cultured in chamber slide flasks and placed in a clinostat yielded similar results when compared to those in the HARV. Also, when they were stained by Oil Red-O for lipid droplets, the clinostat flasks showed a larger number of stained cells compared to control flasks at 48 h. Further, the relative amount of Oil Red-O staining per milligram of protein was found to be higher in the clinostat than in the control cells at 48 h. It is speculated that the increase in the level of lipid content in cells subjected to simulated conditions of microgravity may be due to a disruption in cholesterol transport and/or lesions in the steroidogenic pathway leading to a fall in the synthesis of progesterone. Additionally, the fall in progesterone in simulated conditions of microgravity could be due to apoptosis of luteal cells.  相似文献   

10.
Cells derived by trypsinization of neonatal golden hamster pancreas were cultured in modified Eagle's medium for 120 h in the presence of glucose (0.8 mg/ml) and for an additional 48 h in medium containing glucose (0.8 or 3.1 mg/ml) or tolbutamide (1,000 µg/ml) plus glucose (0.8 mg/ml). At day 7, cultures were stained differentially for light microscopy or examined by electron microscopy. Immunoreactive insulin (IRI) and immunoreactive glucagon (IRG) in the culture medium were measured by standard immunoassay procedures. Staining properties and ultrastructural appearance of cultured cells were comparable to those of the intact neonatal hamster pancreas. Cultures consisted predominantly of cells possessing aldehyde fuchsin positive (AF+) cytoplasmic granules resembling ultrastructurally those of the intact neonatal pancreatic beta cells and additionally, those of fibroblastoid, acinar, acino-insular, and aldehyde fuchsin negative (AF-) argyrophilic cells. IRI release rate by the cultured cells was increased in the presence of elevated glucose or tolbutamide which paralleled the loss of AF+ granulation, but IRG release rate was suppressed by elevated glucose concentration. These findings indicate that these monolayer cultures consist of most of the cell types occurring in the neonatal pancreas, including endocrinologically competent islet cells.  相似文献   

11.
Allogeneic and autoimmune islet destruction limits the success of islet transplantation in autoimmune diabetic patients. This study was designed to investigate whether ex vivo gene transfer of viral interleukin-10 (vIL-10) protects BioBreeding (BB) rat islets from autoimmune destruction after transplantation into diabetic BB recipients. Islets were transduced with adenoviral constructs (Ad) expressing the enhanced green fluorescent protein (eGFP), alpha-1 antitrypsin (AAT) or vIL-10. Transduction efficiency was demonstrated by eGFP-positive cells and vIL-10 production. Islet function was determined in vitro by measuring insulin content and insulin secretion and in vivo by grafting AdvIL-10-transduced islets into syngeneic streptozotocin (SZ)-diabetic, congenic Lewis (LEW.1 W) rats. Finally, gene-modified BB rat islets were grafted into autoimmune diabetic BB rats. Ad-transduction efficiency of islets increased with virus titre and did not interfere with insulin content and insulin secretion. Ad-transduction did not induce Fas on islet cells. AdvIL-10-transduced LEW.1 W rat islets survived permanently in SZ-diabetic LEW.1 W rats. In diabetic BB rats AdvIL-10-transduced BB rat islets were rapidly destroyed. Prolongation of islet culture prior to transplantation improved the survival of gene-modified islets in BB rats. Several genes including those coding for chemokines and other peptides associated with inflammation were down-regulated in islets after prolonged culture, possibly contributing to improved islet graft function in vivo. Islets transduced ex vivo with vIL-10 are principally able to cure SZ-diabetic rats. Autoimmune islet destruction in diabetic BB rats is not prevented by ex vivo vIL-10 gene transfer to grafted islets. Graft survival in autoimmune diabetic rats may be enhanced by improvements in culture conditions prior to transplantation.  相似文献   

12.
Simulated microgravity culture system for a 3-D carcinoma tissue model   总被引:7,自引:0,他引:7  
Nakamura K  Kuga H  Morisaki T  Baba E  Sato N  Mizumoto K  Sueishi K  Tanaka M  Katano M 《BioTechniques》2002,33(5):1068-70, 1072, 1074-6
An in vitro organotypic culture model is needed to understand the complexities of carcinoma tissue consisting of carcinoma cells, stromal cells, and extracellular matrices. We developed a new in vitro model of carcinoma tissue using a rotary cell culture system with four disposable vessels (RCCS-4D) that provides a simulated microgravity condition. Solid collagen gels containing human pancreatic carcinoma NOR-P1 cells and fibroblasts or minced human pancreatic carcinoma tissue were cultured under a simulated microgravity condition or a static Ig condition for seven days. NOR-P1 cultures subjected to the simulated microgravity condition showed greater numbers of mitotic, cycling (Ki-67-positive), nuclear factor-kappa B-activating cells, and a lower number of apoptotic cells than were shown by cultures subjected to the static Ig condition. In addition, human pancreatic carcinoma specimens cultured under the simulated microgravity condition maintained the heterogeneous composition and cellular activity (determined by the cycling cell ratio and mitotic index) of the original carcinoma tissue better than static culture conditions. This new 3-D rotary cell culture system with four disposal vessels may be useful for in vitro studies of complex pancreatic carcinoma tissue.  相似文献   

13.
In this study, we have established a new strategy increasing human islet longevity utilizing allogeneic whole bone marrow (BM) co-cultured with human islets. The cultured islets' function and survival have been evaluated by analysis of insulin secretion in response to high-glucose-challenge, morphological evaluation of cell growth. Human islet only culture failed to reveal evidence of long term survival, growth or function in terms of insulin release or insulin response to glucose challenge. These results indicate that BM increases islet survival and function with the eventual formation of pancreatic endocrine tissue capable of sustaining beta cell fuction.  相似文献   

14.
Rat islet cells in culture are able to form tridimensional aggregates with an architecture and functional activity similar to native islets: pseudoislets. Pseudoislets represent an alternative source for islet transplantation, because their transplant results in a long term allograft acceptance without immunosuppression of the host. Use of pseudoislets has been limited by their reduced yield and by poor reaggregation mass. Since culture conditions have been reported to affect reaggregation, the aim of this study was to evaluate the effects of different concentrations of two sera (Fetal Bovine Serum [FBS] and Rat Serum [RS]) on reaggregation and insulin gene expression in pseudoislets. Islets were isolated from male Lewis rat by means of histopaque gradient centrifugation. The day after islets were disrupted into single cells and cultured in RPMI 1640 5.6 mM glucose with 2%, 5% and 10% solutions of both FBS and RS. Cells spontaneously reaggregated to form pseudoislets. After seven days of culture, pseudoislets were counted and analysed for insulin secretion and insulin gene expression using RT-PCR. Rat serum increased the number of aggregates and their diameters. Insulin gene expression of pseudoislets cultured with RS showed a ten fold increase in comparison to those cultured with FBS. These data show that the culture medium supplemented with RS improves total reaggregate volume and increases insulin gene expression. With the perspective of pseudoislets' use in transplantation RS is better indicated than FBS for the production of rat pseudoislets.  相似文献   

15.
High-level expression of the low-Km glucose transporter isoform GLUT-1 is characteristic of many cultured tumor and oncogene-transformed cells. In this study, we tested whether induction of GLUT-1 occurs in tumors in vivo. Normal mouse beta islet cells express the high-Km (approximately 20 mM) glucose transporter isoform GLUT-2 but not the low-Km (1 to 3 mM) GLUT-1. In contrast, a beta cell line derived from an insulinoma arising in a transgenic mouse harboring an insulin-promoted simian virus 40 T-antigen oncogene (beta TC3) expressed very low levels of GLUT-2 but high levels of GLUT-1. GLUT-1 protein was not detectable on the plasma membrane of islets or tumors of the transgenic mice but was induced in high amounts when the tumor-derived beta TC3 cells were grown in tissue culture. GLUT-1 expression in secondary tumors formed after injection of beta TC3 cells into mice was reduced. Thus, high-level expression of GLUT-1 in these tumor cells is characteristic of culture conditions and is not induced by the oncogenic transformation; indeed, overnight culture of normal pancreatic islets causes induction of GLUT-1. We also investigated the relationship between expression of the different glucose transporter isoforms by islet and tumor cells and induction of insulin secretion by glucose. Prehyperplastic transgenic islet cells that expressed normal levels of GLUT-2 and no detectable GLUT-1 exhibited an increased sensitivity to glucose, as evidenced by maximal insulin secretion at lower glucose concentrations, compared with that exhibited by normal islets. Further, hyperplastic islets and primary and secondary tumors expressed low levels of GLUT-2 and no detectable GLUT-1 on the plasma membrane; these cells exhibited high basal insulin secretion and responded poorly to an increase in extracellular glucose. Thus, abnormal glucose-induced secretion of insulin in prehyperplastic islets in mice was independent of changes in GLUT-2 expression and did not require induction of GLUT-1 expression.  相似文献   

16.
The only cure available for Type 1 diabetes involves the transplantation of islets of Langerhans isolated from donor organs. However, success rates are relatively low. Disconnection from vasculature upon isolation and insufficient rate of revascularization upon transplantation are thought to be a major cause, as islet survival and function depend on extensive vascularization. Research has thus turned toward the development of pretransplantation culture techniques to enhance revascularization of islets, so far with limited success. With the aim to develop a technique to enhance islet revascularization, this work proposes a method to isolate and culture pancreas-derived blood vessels. Using a mild multistep digestion method, pancreatic blood vessels were retrieved from whole murine pancreata and cultured in collagen Type 1. After 8 days, 50% of tissue explants had formed anastomosed microvessels which extended up to 300 μm from the explant tissue and expressed endothelial cell marker CD31 but not ductal marker CK19. Cocultures with islets of Langerhans revealed survival of both tissues and insulin expression by islets up to 8 days post-embedding. Microvessels were frequently found to encapsulate islets, however no islet penetration could be detected. This study reports for the first time the isolation and culture of pancreatic blood vessels. The methods and results presented in this work provide a novel explant culture model for angiogenesis and tissue engineering research with relevance to islet biology. It opens the door for in vivo validation of the potential of these pancreatic blood vessel explants to improve islet transplantation therapies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2745, 2019.  相似文献   

17.
The transfer of 6-carboxyfluorescein between islet cells in monolayer culture was observed by fluorescence microscopy, and the endocrine cells involved in this transfer were identified by immunohistochemistry and electron microscopy. The results show that carboxyfluorescein was directly exchanged between homologous B-cells and also between B- and A- or D-cells. Successive microinjections of the probe into different cells of the same cluster showed the existence of separate territories, each formed by 2-8 communicating cells. Intercellular communication was not observed after every dye microinjection, and communicating and noncommunicating islet cells were found to coexist within the same cluster. The data indicate that the exchange of exogenous cytoplasmic molecules occurs between different types of endocrine islet cells. However, within a single cluster, all islet cells are not metabolically coupled to one another, at a given time.  相似文献   

18.
BackgroundThe efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation.MethodsMale BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group.ResultsBlood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14.ConclusionsThe efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.  相似文献   

19.
Jung EJ  Kim SC  Wee YM  Kim YH  Choi MY  Jeong SH  Lee J  Lim DG  Han DJ 《Cytotherapy》2011,13(1):19-29
Background aimsRecent evidence has suggested that transplanted bone marrow (BM)-derived mesenchymal stromal cells (MSC) are able to engraft and repair non-hematopoietic tissues successfully, including central nervous system, renal, pulmonary and skin tissue, and may possibly contribute to tissue regeneration. We examined the cytoprotective effect of BM MSC on co-cultured, isolated pancreatic isletsMethodsPancreatic islets and MSC isolated from Lewis rats were divided into four experimental groups: (a) islets cultured alone (islet control); (b) islets cultured in direct contact with MSC (IM-C); (c) islets co-cultured with MSC in a Transwell system, which allows indirect cell contact through diffusible media components (IM-I); and (d) MSC cultured alone (MSC control). The survival and function of islets were measured morphologically and by analyzing insulin secretion in response to glucose challenge. Cytokine profiles were determined using a cytokine array and enzyme-linked immunosorbent assaysResultsIslets contact-cultured with MSC (IM-C) showed sustained survival and retention of glucose-induced insulin secretory function. In addition, the levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) were decreased, and tissue inhibitor of metalloproteinases-1 (TIMP-1) and vascular endothelial growth factor (VEGF) levels were increased at 4 weeks in both the IM-C and IM-I groupsConclusionsThese results indicate that contact co-culture is a major factor that contributes to islet survival, maintenance of cell morphology and insulin function. There might also be a synergic effect resulting from the regulation of inflammatory cytokine production. We propose that BM MSC are suitable for generating a microenvironment favorable for the repair and longevity of pancreatic islets.  相似文献   

20.
Summary Suspensions of viable testicular cells obtained from two groups of rats (one group treated for ten days with 50 I. U. of serum gonadotropins (HCG) daily; one group not previously treated) were cultured for ten days. Numerous cells adhered to the glass to form a confluent monolayer and remained in good condition after ten days. This monolayer contained two cell types identified by electron microscopy: fibroblastic cells and Leydig cells. The relative proportion by which these two cells contributed to the monolayer was related to the condition of the donor when the culture was initiated. Fibroblastic cells were more abundant when the animal was not previously treated with HCG. However Leydig cells almost exclusively formed the monolayer when cultures were begun with testicular cells of HCG-treated rats. Gonadotropins on the other hand did not seem capable of acting in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号