首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In practice, the Bruce protocol is the most commonly used treadmill protocol to assess maximal oxygen consumption (V(.-)O2max). It has been suggested that a running protocol (e.g., Astrand) may elicit a comparatively higher V(.-)O2max and different cardiorespiratory responses when applied to moderately trained runners. Thus, the purpose of this study was to compare V(.-)O2max and other cardiorespiratory responses as elicited by the standard Bruce and a modified Astrand treadmill protocol in moderately trained runners. Fifteen women (age = 21 years, height = 171.5 cm, weight = 63 kg, and body fat = 18%) and 15 men (age = 26 years, height = 177 cm, weight = 72 kg, and body fat = 9%) who were moderately trained runners completed a standard Bruce and modified Astrand protocol (random order), separated by approximately 7 days. Heart rate, Borg ratings of perceived exertion, blood pressure, and pulmonary gas exchange variables were measured during the exercise tests using standard laboratory procedures. This study revealed V(.-)O2max values between the Bruce protocol (51.3 +/- 11.6 ml x kg(-1) x min(-1)) and modified Astrand (51.5 +/- 10.9 ml x kg(-1) x min(-1)) were not significantly different in either the men or the women. However, the Bruce protocol elicited significantly higher maximum treadmill time in men and maximum respiratory exchange ratio (RERmax) and maximum minute ventilation (VEmax) values in both genders. Conversely, the modified Astrand elicited a higher HRmax. These data suggest that V(.-)O2max in both moderately trained men and women runners is independent of treadmill protocol despite differences in HRmax, RERmax, and VEmax.  相似文献   

2.
3.
We measured maximal O2 uptake (VO2max) during stationary cycling in 40 pregnant women [aged 29.2 +/- 3.9 (SD) yr, gestational age 25.9 +/- 3.3 wk]. Data from 30 of these women were used to develop an equation to predict the percent VO2max from submaximal heart rates. This equation and the submaximal VO2 were used to predict VO2max in the remaining 10 women. The accuracy of VO2max values estimated by this procedure was compared with values predicted by two popular methods: the Astrand nomogram and the VO2 vs. heart rate (VO2-HR) curve. VO2max values estimated by the derived equation method in the 10 validation subjects were only 3.7 +/- 12.2% higher than actual values (P greater than 0.05). The Astrand method overestimated VO2max by 9.0 +/- 19.4% (P greater than 0.05), whereas the VO2-HR curve method underestimated VO2max by only 1.6 +/- 10.3% in the same 10 subjects (P greater than 0.05). Both the Astrand and the VO2-HR curve methods correlated well with the actual values when all 40 subjects were considered (r = 0.77 and 0.85, respectively), but the VO2-HR curve method had a lower SE of prediction than the Astrand method (8.7 vs. 10.4%). In a comparison group of 10 nonpregnant sedentary women (29.9 +/- 4.5 yr), an equation relating %VO2max to HR nearly identical to that obtained in the pregnant women was found, suggesting that pregnancy does not alter this relationship. We conclude that extrapolating the VO2-HR curve to an estimated maximal HR is the most accurate method of predicting VO2max in pregnant women.  相似文献   

4.
We investigated sources of error in estimating steady-state O2 consumption (VO2ss) by calculating O2 uptake from an anesthesia bag containing O2, He, and N2 during 10-20 s of rebreathing (VO2rb). In 11 normal resting subjects, VO2rb calculated with end-tidal sampling overestimated VO2ss by 16 +/- 15% (SD) (P less than 0.003). This error was proportional to the increase in pulse rate during rebreathing, so that pulse-corrected VO2rb slightly underestimated VO2ss by 2.1 +/- 12.2% (P = 0.66) in the six subjects who rebreathed 28% O2 in the rebreathing bag but significantly underestimated VO2ss by 7.5 +/- 6.7% (P less than 0.04) in the six subjects who rebreathed 21% O2 in the rebreathing bag. During exercise, VO2rb underestimated VO2ss by 4 +/- 12% (P less than 0.001) and by 7 +/- 6% at O2 consumptions greater than 2,000 ml/min if O2 in the rebreathing bag was kept above 20% throughout rebreathing. We found that VO2rb calculated with end-tidal gas concentrations underestimated VO2ss by 1-43% in patients with moderate-to-severe obstructive lung disease, with even greater errors when mixed expired samples were used. The magnitude of the discrepancy correlated poorly with abnormalities in standard pulmonary function tests. Based on these data, VO2rb closely approximates VO2ss in normal subjects, provided hypoxia during rebreathing is avoided and cardiac acceleration from rebreathing is taken into account during resting measurement.  相似文献   

5.
We questioned whether the amplitudes of the circadian pattern of body temperature (T(b)), oxygen consumption (V (O(2))) and heart rate (HR) changed systematically among species of different body weight (W). Because bodies of large mass have a greater heat capacitance than those of smaller mass, if the relative amplitude (i.e., amplitude/mean value) of metabolic rate was constant, one would expect the T(b) oscillation to decrease with the increase in the species W. We compiled data of T(b), V (O(2)) and HR from a literature survey of over 200 studies that investigated the circadian pattern of these parameters. Monotremata, Marsupials and Chiroptera, were excluded because of their characteristically low metabolic rate and T(b). The peak-trough ratios of V (O(2)) (42 species) and HR (35 species) averaged, respectively, 1.57+/-0.08, and 1.35+/-0.07, and were independent of W. The daily high values of T(b) did not change, while the daily low T(b) values slightly increased, with the species W; hence, the high-low T(b) difference (57 species) decreased with W (3.3 degrees C.W(-0.13)). However, the decrease in T(b) amplitude with W was much less than expected from physical principles, and the high-low T(b) ratio remained significantly above unity even in the largest mammals. Thus, it appears that in mammals, despite the huge differences in physical characteristics, the amplitude of the circadian pattern is a fixed (for V (O(2)) and HR), or almost fixed (for T(b)), fraction of the 24-h mean value. Presumably, the amplitudes of the oscillations are controlled parameters of physiological significance.  相似文献   

6.
The purpose of this study was to validate the Physical Working Capacity at the Heart Rate Threshold (PWC HRT) and Physical Working Capacity at the Oxygen Consumption Threshold (PWC V O2) tests by 1) using individual power vs. duration relationships to estimate the times to exhaustion (ETTE) at the PWC HRT and PWC V O2, and 2) comparing the power outputs and ETTE values of the PWC HRT and PWC V O2 with those of the ventilatory threshold (VT). Ten adults (mean age +/- SD = 23 +/- 1 years) performed an incremental test to exhaustion on a cycle ergometer for the determination of V O2 peak and VT. The subjects also performed four randomly ordered workbouts to exhaustion at different power outputs (ranging from 98 to 246 W) to determine the PWC V O2, PWC HRT, and power vs. duration relationship. Power curve analyses (y = ax b) were used to define the hyperbolic power vs. duration relationship for each subject and to determine the ETTE at the PWC V O2, PWC HRT, and VT. Two separate one-way repeated-measures analyses of variance indicated that there were significant differences among the fatigue thresholds (PWC V O2 > PWC HRT) and ETTE values (PWC HRT > PWC V O2): PWC V O2 (mean +/- SD = 147 +/- 43 W; ETTE = 21 +/- 3 minutes), PWCHRT (136 +/- 37 W; ETTE = 29 +/- 6 minutes), and VT (143 +/- 44 W; ETTE = 27 +/- 11 minutes). These findings were consistent with previous studies that indicated that the PWC HRT occurred at a lower power output than the PWC V O2. Furthermore, the PWC HRT was maintained for a mean of 29 minutes, whereas the PWC V O2 and VT were maintained for 21 and 27 minutes, respectively. These findings indicate that the ETTE values for the PWC V O2 and PWC HRT were substantially less than those suggested in previous studies.  相似文献   

7.
The purpose of this study was to investigate whether indices of cardiorespiratory fitness are related to quality of life (QOL) in women survivors of breast cancer. Using the European Organization for Research and Treatment of Cancer QLQ-30 questionnaire, we assessed the QOL of 16 participants (age, 50 +/- 9 years; body mass, 66.6 +/- 9.6 kg). All participants performed incremental cycle ergometer exercise to determine several indices of cardiorespiratory fitness (e.g., peak oxygen uptake [.V(O2)peak, in L.min(-1), ml.kg(-1).min(-1)]), peak power output (PPO, in W), PPO/ body mass (W.kg(-1), peak heart rate (HRpeak, b.min(-1), peak ventilation (VEpeak), and .V(O2) and heart rate (HR) at the ventilatory (VT) and respiratory compensation (RCT) thresholds. Relationships between QOL and variables were assessed using Spearman rank-difference correlation tests. A significant inverse relationship (p < 0.05) was found for QOL scores and values for age (years) and body mass (kg) ( = -0.53), %HRpeak@VT ( = -0.59) and %VEpeak@VT ( = -0.61). A significant positive relationship (p < 0.05) was found for QOL and PPO/body mass ( = 0.59) and HRpeak ( = 0.78), .V(O2)@RCT (ml.kg(-1.min(-1) ( = 0.51), power output (PO, expressed as either W or W.kg(-1) at RCT, and HR at RCT ( = 0.54). No other significant relationship was found between QOL and variables obtained from the tests. In conclusion, these findings highlight possible relationships between cardiorespiratory fitness and well-being in survivors of breast cancer. From a practical point of view, our data emphasize the need for this population to engage in programmed cardiorespiratory exercise training, mainly designed to improve VT and RCT. The improvement of both submaximal indices can have a beneficial effect on QOL.  相似文献   

8.
In five different groups consisting of athletes (TPG), high school students, men and women (HS), rural group (Arun), and a professional football group (Galatama), the VO2max was determined indirectly, using the cycle ergometer exercise test and Astrand's nomogram. Systolic and diastolic blood pressure was determined using a sphygnomanometer and measured after steady state was reached at each load. The aerobic capacities of the group below 20 years differ significantly between the TPG and all the other groups compared (P less than 0.01). Between the other groups there is a difference in VO2max, though significant differences were only found between the HS (men), Arun group and the HS (women) (P less than 0.01). In the group above 20 years the TPG group have the highest VO2max, and the differences when compared with the HS (men) and Arun groups were significant (P less than 0.01). In the Arun group above 30 years, though a lower values was found in the older age group, significant differences in VO2max were only found between the 30-39 years and the 40-49 years age group (P less than 0.01). Blood pressure responses to different workloads successfully confirmed the results reported by Astrand and Rodahl (1970) and Barnard et al. (1973), but no consistent relationship was found between aerobic capacities and systolic blood pressures.  相似文献   

9.
Relationships among O2 uptake (VO2), heart rate, and work rate during constant-load submaximal cycle ergometry and ramp-forced exercise to exhaustion have been studied in core groups of trained (n = 15) and untrained (n = 10), 20- to 29-yr-old males. A signal aim was to improve on the accuracy of the 1954 Astrand-Ryhming (A-R) nomogram predicting maximum aerobic power from heart rate elevation at submaximum work rates. A new nomogram has been developed based on a linear relationship, established in experimental groups, between VO2 and delta HR, the latter being defined as the elevation of exercise heart rate above that reached during zero-load pedaling at 90 rpm. The delta HR variable used in a nomogram linking it and submaximum VO2 (either derived by calculation from the concomitant steady-state work rate or measured directly from respiratory gas analysis) successfully differentiated maximum aerobic power of trained from untrained subjects in core groups whose different abilities could not otherwise be distinguished by the A-R nomogram itself. In a validation group of trained (n = 5), untrained (n = 5), and moderately trained (n = 4) 20- to 29-yr-old males, the correlation measured between VO2max values and those predicted from the new nomogram was significantly better (r = 0.98) (P less than 0.05) than predictions made from the A-R nomogram (r = 0.80).  相似文献   

10.
We measured the pressure within an isolated segment of the upper airway in three dogs during wakefulness (W), slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Measurements were taken from a segment of the upper airway between the nares and midtrachea while the dog breathed through a tracheostoma. These pressure changes represented the sum of respiratory-related forces generated by all muscles of the upper airway. The mean base-line level of upper airway pressure (Pua) was -0.5 +/- 0.03 cmH2O during W, increased by a mean of 2.1 +/- 0.2 cmH2O during SWS, and was variable during REM sleep. The mean inspiratory-related phasic change in Pua was -1.2 +/- 0.1 cmH2O during wakefulness. During SWS, this phasic change in Pua decreased significantly to a mean of -0.9 +/- 0.1 cmH2O (P less than 0.05). During REM sleep, the phasic activity was extremely variable with periods in which there were no fluctuations in Pua and others with high swings in Pua. These data indicate that in dogs the sum of forces which dilate the upper airway during W decreases during SWS and REM sleep. The consistent coupling between inspiratory drive and upper airway dilatation during wakefulness persists in SWS, but is frequently uncoupled during REM sleep.  相似文献   

11.
The surface electromyogram (EMG) from active muscle and oxygen uptake (VO2) were studied simultaneously to examine changes of motor unit (MU) activity during exercise tests with different ramp increments. Six male subjects performed four exhausting cycle exercises with different ramp slopes of 10, 20, 30 and 40 W.min-1 on different days. The EMG signals taken from the vastus lateralis muscle were stored on a digital data recorder and converted to obtain the integrated EMG (iEMG). The VO2 was measured, with 20-s intervals, by the mixing chamber method. A non-linear increase in iEMG against work load was observed for each exercise in all subjects. The break point of the linear relationship of iEMG was determined by the crossing point of the two regression lines (iEMGbp). Significant differences were obtained in the exercise intensities corresponding to maximal oxygen uptake (VO2max) and the iEMGbp between 10 and 30, and 10 and 40 W.min-1 ramp exercises (P < 0.05). However, no significant differences were obtained in VO2max and VO2 corresponding to the iEMGbp during the four ramp exercises. With respect to the relationship between VO2 and exercise intensity during the ramp increments, the VO2-exercise intensity slope showed significant differences only for the upper half (i.e. above iEMGbp). These results demonstrated that the VO2max and VO2 at which a nonlinear increase in iEMG was observed were not varied by the change of ramp slopes but by the exercise intensity corresponding to VO2max and the iEMGbp was varied by the change of ramp slopes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The aim of this study was to measure running times to exhaustion (Tlim) on a treadmill at 100% of the minimum velocity which elicits max max in 38 elite male long - distance runners max = 71.4 ± 5.5 ml.kg–1.min–1 and max = 21.8 ± 1.2 km.h–1). The lactate threshold (LT) was defined as a starting point of accelerated lactate accumulation around 4 mM and was expressed in max. Tlim value was negatively correlated with max (r = -0.362, p< 0.05) and max (r = –0.347, p< 0.05) but positively with LT (%v max) (r = 0.378, p < 0.05). These data demonstrate that running time to exhaustion at max in a homogeneous group of elite male long-distance runners was inversely related to max and experimentally illustrates the model of Monod and Scherrer regarding the time limit-velocity relationship adapted from local exercise for running by Hughson et al. (1984) .  相似文献   

13.
The Pubishers wish to apologise for the inadvertent mis-spellingof Charles J. Wysocki and other errors in the above article,which should be corrected as follows. On Page 471, Table I, the first Number in the second columnshould read 2:6. On page 477, Table II, the results under d-limonene should readas below. On page 481, the NIH grant number to CJW is DC00298.  相似文献   

14.
Aqueous vanadate and aqueous tungstate have been known to mimic all or most of the actions of insulin in intact cell systems with respect to normalization of the blood glucose level. By carrying out oral administration in vivo experiments on the blood glucose level of streptozotocin (STZ)-induced diabetes (STZ mice), the insulin-mimetic (IM) effects of metal-oxide clusters of all-inorganic composition were examined using many types of polyoxometalates (POM) with and without vanadium substitution. Several homo-POM and vanadium-substituted POM showed hypoglycemic effects. The observed hypoglycemic effects indicated that POM with the Dawson structure [[alpha-P(2)W(18)O(62)](6-) (W-2), [alpha-P(2)W(17)V(V)O(62)](7-) (V-19) and [alpha-1,2,3-P(2)W(15)V(V)(3)O(62)](9-) (V-04)] are more effective than those with the Keggin structure [[alpha-PW(12)O(40)](3-) (W-1), [alpha-PW(11)V(V)O(40)](4-) (V-01), [alpha-1,2-PW(10)V(V)(2)O(40)](5-) (V-02), [alpha-1,2,3-PW(9)V(V)(3)O(40)](6-) (V-03) and [alpha-1,4,9-PW(9)V(V)(3)O(40)](6-) (V-13)]. The vanadate cluster [V(10)O(28)](6-) (V-15) also showed a hypoglycemic effect. (31)P and (51)V NMR measurements showed that the Dawson POM (W-2, V-04 and V-19) are stable in aqueous solution under the conditions used. The effect of all POM on the body weight of STZ mice was also examined. The decrease in body weight after administration of W-2 was much less than for V-19, V-04 and V-15. This suggests that not only monomeric tungstate and vanadate, but also the structure factors of tungstate and vanadate clusters, can play a significant role in their biological action.  相似文献   

15.
Respiratory enthalpy change, rectal temperature, and heart rate of mine rescue workers exercising at a metabolic energy production rate of 4 met (1 met-58.15 W.m-2) in a 40 degrees C saturated environment, wearing closed-circuit breathing apparatus, were continuously measured in 10 volunteer subjects. The effects of using liquid O2 and compressed O2 apparatus were compared in each subject. Evaporative heat exchange was much greater with the liquid O2 type of apparatus, causing a significantly lower rate of rise of rectal temperature and heart rate. Convective heat exchange was negligible. Mean values for evaporative heat loss (maximum) were 61 +/- 16 (SD) W with liquid O2 and 20 +/- 18 W with compressed O2 (P less than 0.0001, 2-sided t test). Mean values for rectal temperature (rate of increase) were 0.022 +/- 0.009 (SD) degrees C.min-1 for liquid O2 and 0.036 +/- 0.015 degrees C.min-1 for compressed O2 (P less than 0.005, 2-sided paired t test). Mean values for heart rate (rate of increase) were 2.64 +/- 0.74 (SD) min-2 for liquid O2 and 3.27 +/- 0.89 min-2 for compressed O2 (P less than 0.02, 2-sided paired t test). This study quantifies, for the first time, the respiratory enthalpy change in exercising heat-stressed mine rescue workers and shows, from a physiological point of view, that the liquid O2 apparatus is clearly superior to the compressed O2 apparatus.  相似文献   

16.
To study the allometric relationship between standard metabolic rate and body mass (mass range 16-3627 g) in green iguanas, Iguana iguana (n=32), we measured rates of oxygen consumption (V(O(2))) at 30 degrees C during scotophase. The relationship could be described as: V(O(2))(ml h(-1))=0.478W(0.734). The resulting mass exponent was similar to the 3/4 power commonly used in interspecific curves (P>0.05), but differed from a proposed intraspecific value of 2/3 (P<0.05). The mass exponents of male (n=8) and female (n=11) iguanas did not differ (P>0.05). The mass adjusted V(O(2)) was higher than predicted from generalized squamate curves. The mean mass exponent of intra-individual allometric equations of iguanas (n=7) at varying masses during ontogeny did not differ from that of the pooled equation, indicating that scaling of V(O(2)) is similar for both between and within individuals. Thermal acclimation, compensatory changes in V(O(2)) with prolonged exposure to a constant temperature, was not observed in juvenile iguanas (n=11) between 1 and 5 weeks of acclimation at 30 degrees C.  相似文献   

17.
To assess whether preload-adjusted maximal power (PAMP), which is calculated as W(max)/V (where W(max) is maximal power and V(ed) is end-diastolic volume with beta = 2) is an index of right ventricular (RV) contractility, we measured RV pressure (P) and volume (V) and pulmonary artery pressure and flow in 10 dogs at baseline and after inotropic stimulation. PAMP was derived from steady-state data, whereas the slope (E(es)) and intercept (V(d)) of the end-systolic P-V relationship were derived from data obtained during vena caval occlusion. Inotropic stimulation increased E(es) (from 0.96 +/- 0.25 to 1.62 +/- 0.28 mmHg/ml; P < 0.001) and V(d) (from -3.0 +/- 17.2 to 12.4 +/- 10.8 ml; P < 0.05) but not PAMP (from 0.24 +/- 0.10 to 0.36 +/- 0.22 mW/ml(2); P = 0.09). We found a strong relationship between the optimal beta-factor for preload adjustment and V(d). A corrected PAMP, PAMP(c) = W(max)/(V(ed) - V(d))(2), which incorporated the V(d) dependency, was sensitive to the inotropic changes (from 0.23 +/- 0.12 to 0.54 +/- 0.17 mW/ml(2); P < 0.001) with a good correlation with E(es) (r = 0.88; P < 0.001).  相似文献   

18.
The isobaric and isovolumetric properties of intrapulmonary arteries were evaluated by placing a highly compliant balloon inside arterial segments. The passive pressure-volume (P-V) curve was obtained by changing volume (0.004 ml/s) and measuring pressure. The isobaric active volume change (delta V) or isovolumetric active pressure change (delta P) generated by submaximal histamine was measured at four different transmural pressures (Ptm's) reached by balloon inflation. The maximal delta P = 11.2 +/- 0.6 cmH2O (mean +/- SE) was achieved at 30.8 +/- 1.2 cmH2O Ptm and maximal delta V = 0.20 +/- 0.02 ml at 16.7 +/- 1.7 cmH2O Ptm. The P-V relationships were similar when volume was increased after either isobaric or isovolumetric contraction. The calculated length-tension (L-T) relationship showed that the active tension curve was relatively flat and that the passive tension at the optimal length was 149 +/- 11% of maximal active tension. These data show that 1) a large elastic component operates in parallel with the smooth muscle in intralobar pulmonary arteries, and 2) the change in resistance associated with vascular expansion of the proximal arteries is independent of the type of contraction that occurs in the more distal arterial segments.  相似文献   

19.
Molybdenum- or tungsten-containing enzymes catalyze oxygen atom transfer reactions involved in carbon, sulfur, or nitrogen metabolism. It has been observed that reduction potentials and oxygen atom transfer rates are different for W relative to Mo enzymes and the isostructural Mo/W complexes. Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations on [Mo(V)O(bdt)(2)](-) and [W(V)O(bdt)(2)](-), where bdt=benzene-1,2-dithiolate(2-), have been used to determine that the energies of the half-filled redox-active orbital, and thus the reduction potentials and MO bond strengths, are different for these complexes due to relativistic effects in the W sites.  相似文献   

20.
Maximum oxygen uptake (VO2max) was measured directly and predicted from cardiac frequency measurements in 54 healthy Chilean industrial workers aged 20 to 55 years, together with assessment of their dietary intake, body composition and blood chemistry. Measurement of VO2 was performed on a motor-driven treadmill. The predicted VO2max was obtained using a cycle ergometer by two methods: 1) the Astrand-Ryhming nomogram and 2) the linear relationship between "steady state" heart rate (HR) and submaximum work, with subsequent extrapolation to "maximum" heart rate. Extrapolation of the HR/load regression line to 170 bpm permitted determination of the physical working capacity at 170 bpm (W170). VO2max for the 20-29 year group (Group I) averaged 3624 ml.min-1 and decreased to 3066 ml.min-1 in the 50-55 year group (Group IV). Lower values were obtained using the Astrand-Ryhming nomogram and HR/load regression (-15% and -9% respectively). W170 was also affected by age (Group I: 190.6 W and Group IV: 158.5 W). No significant correlation were found between VO2max and plasma variables, with the exception of cholesterol (r = 0.59). On the contrary, anthropometric variables showed significant correlations with VO2max, which permitted the prediction of VO2max using multiple regression equations. The two best correlations were: 1. VO2max = 0.800 - 0.0225.(A) +0.0189.(W)+1.26.(H) (r = 0.87; p less than 0.001) 2. VO2max = 0.996 - 0.0176.(A) + 0.025.(W) + 0.838.(H) + 0.0255.(LBM) (r = 0.88; p less than 0.001) where A = years of age; W = body weight in kg; H = height in m and LBM = lean body mass in kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号