首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The human eosinophil granule contains a number of cationic proteins that have been identified and purified to homogeneity, including the major basic protein (MBP), the eosinophil cationic protein (ECP), and the eosinophil-derived neurotoxin (EDN). Because of confusion in the literature regarding the distinctiveness of MBP and ECP, we investigated the immunochemical and physicochemical properties of these purified proteins by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), by specific double antibody radioimmunoassays (RIA) for MBP and ECP, and by fractionation of acid-solubilized eosinophil granules on Sephadex G-50 columns. Analysis of a mixture of the three purified proteins by SDS-PAGE showed that they migrated as three distinct bands with differing m.w. Comparison by specific RIA for MBP and ECP did not demonstrate any appreciable immunochemical cross-reactivities among the three proteins. Sephadex G-50 column fractions of acid-solubilized eosinophil granules were analyzed by RIA and by SDS-PAGE analysis of individual column fractions. MBP, ECP, and EDN eluted at different volumes from Sephadex G-50 columns as determined by RIA and SDS-PAGE. Soluble extracts of eosinophil granules from patients with the hypereosinophilic syndrome contained between six and 64 times more MBP than ECP on a weight basis. These observations demonstrate that MBP, ECP, and EDN are distinctive cationic proteins of the human eosinophil granule and that eosinophil granules from patients with eosinophilia contain considerably greater quantities of MBP than ECP.  相似文献   

2.
We examined the bactericidal activity of two proteins that are abundant in the cytoplasmic granules of human eosinophils, major basic protein (MBP) and eosinophil cationic protein (ECP). Unlike the human neutrophil's peptide defensins, both MBP and ECP killed stationary phase Staphylococcus aureus 502A in a simple nutrient-free buffer solution. Although MBP also killed Escherichia coli ML-35 with considerable efficacy under these experimental conditions, the in vitro activity of ECP against E. coli was considerably enhanced if mid-logarithmic phase bacteria replaced stationary phase organisms or if the assay medium was enriched with trypticase soy broth. The antibacterial activity of both eosinophil proteins was modulated by incubation time, protein concentration, temperature and pH. A pBR322-transformed derivative of E. coli ML-35 was used to examine the effects of ECP and MBP on integrity of the bacterial inner membrane (IM) and outer membrane. Although both MBP and ECP caused outer and inner membrane permeabilization when nutrients were present, only MBP was effective under nutrient-free conditions. Two proton ionophores (DNP and carbonyl cyanide m-chlorophenyl hydrazone) protected E. coli from the bactericidal effects of ECP but not from MBP. These findings establish that MBP and ECP have bactericidal properties and suggest that these proteins kill E. coli by similar but nonidentical mechanisms marked by an attack on the target cell's membranes. In view of evidence that high concentrations of ECP and MBP exist in cytoplasmic granules whose contents are translocated to phagocytic vacuoles, we suggest that MBP and ECP contribute to the eosinophil's ability to kill ingested bacteria.  相似文献   

3.
The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity   总被引:5,自引:0,他引:5  
The eosinophil cationic protein (ECP) is a specific cytotoxic constituent of granules. In this work we demonstrated that ECP has a ribonuclease activity. Purified ECP was resolved by ion exchange chromatography into subfractions, which all showed ribonuclease activity. Another eosinophil granule protein, EPX, identical with eosinophil-derived neurotoxin (EDN) had a 125-fold higher RNase activity than ECP. ECP may exert its cytotoxic effects on parasites and cells because of its extreme basicity alone or it may be internalized and act by degrading mRNA.  相似文献   

4.
Composition of azurophil and specific granules from human polymorphonuclear neutrophils and granules from eosinophils is presented. Biosynthesis of the granule proteins is discussed in detail with particular emphasis on neutrophil myeloperoxidase (MPO) and eosinophil cationic protein (ECP).  相似文献   

5.
Major basic protein (MBP), an arginine-rich basic polypeptide that constitutes the crystalloid core of the large specific eosinophil granule, has previously been shown to stimulate noncytolytic histamine release from human basophils and rat mast cells by an IgE-independent mechanism. Two additional basic polypeptides present in eosinophil granules, eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN), were examined for similar activity in the present study. Acid-solubilized eosinophil granules were fractionated by chromatography on a Sephadex G-50 column. Incubation of basophil-containing human mononuclear cells with the individual column fractions demonstrated that histamine release occurred only with the fractions that contained MBP. The selectivity of the basophil response for MBP was confirmed by using equimolar concentrations of purified MBP, ECP, and EDN. In contrast, both MBP and ECP, but not EDN, stimulated histamine release from purified rat peritoneal mast cells. Reduction and alkylation of the MBP molecule diminished the response of human basophils to MBP but enhanced the potency of the molecule with rat mast cells. The distinct potency of MBP as a stimulus for histamine secretion from human basophils suggests that eosinophil release of MBP may be a specific event in the augmentation of immediate hypersensitivity reactions and other disorders characterized by eosinophilia.  相似文献   

6.
Eosinophil granulocytes reside in respiratory mucosa including lungs, in the gastro-intestinal tract, and in lymphocyte associated organs, the thymus, lymph nodes and the spleen. In parasitic infections, atopic diseases such as atopic dermatitis and asthma, the numbers of the circulating eosinophils are frequently elevated. In conditions such as Hypereosinophilic Syndrome (HES) circulating eosinophil levels are even further raised. Although, eosinophils were identified more than hundred years ago, their roles in homeostasis and in disease still remain unclear. The most prominent feature of the eosinophils are their large secondary granules, each containing four basic proteins, the best known being the eosinophil cationic protein (ECP). This protein has been developed as a marker for eosinophilic disease and quantified in biological fluids including serum, bronchoalveolar lavage and nasal secretions. Elevated ECP levels are found in T helper lymphocyte type 2 (atopic) diseases such as allergic asthma and allergic rhinitis but also occasionally in other diseases such as bacterial sinusitis. ECP is a ribonuclease which has been attributed with cytotoxic, neurotoxic, fibrosis promoting and immune-regulatory functions. ECP regulates mucosal and immune cells and may directly act against helminth, bacterial and viral infections. The levels of ECP measured in disease in combination with the catalogue of known functions of the protein and its polymorphisms presented here will build a foundation for further speculations of the role of ECP, and ultimately the role of the eosinophil.  相似文献   

7.
Nitration of tyrosine residues has been observed during various acute and chronic inflammatory diseases. However, the mechanism of tyrosine nitration and the nature of the proteins that become tyrosine nitrated during inflammation remain unclear. Here we show that eosinophils but not other cell types including neutrophils contain nitrotyrosine-positive proteins in specific granules. Furthermore, we demonstrate that the human eosinophil toxins, eosinophil peroxidase (EPO), major basic protein, eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP), and the respective murine toxins, are post-translationally modified by nitration at tyrosine residues during cell maturation. High resolution affinity-mass spectrometry identified specific single nitration sites at Tyr349 in EPO and Tyr33 in both ECP and EDN. ECP and EDN crystal structures revealed and EPO structure modeling suggested that the nitrated tyrosine residues in the toxins are surface exposed. Studies in EPO(-/-), gp91phox(-/-), and NOS(-/-) mice revealed that tyrosine nitration of these toxins is mediated by EPO in the presence of hydrogen peroxide and minute amounts of NOx. Tyrosine nitration of eosinophil granule toxins occurs during maturation of eosinophils, independent of inflammation. These results provide evidence that post-translational tyrosine nitration is unique to eosinophils.  相似文献   

8.
To study the cytotoxic reactions responsible for mediating eosinophil damage to schistosomula of Schistosoma mansoni, we have used cytoplasts (eosinophil or neutrophil vesicles devoid of granules and nuclei, with an intact oxidase in their plasma membrane) in combination with purified eosinophil cationic protein (ECP) or major basic protein (MBP) in a cytotoxicity test toward schistosomula. Suboptimal concentrations of ECP (10(-6) M) or MBP (10(-6) M) resulting in less than 10% killing were used in combination with cytoplasts. Cytoplasts alone in the presence of immune serum tested over a wide range of cytoplast:schistosomula ratios generated superoxide and hydrogen peroxide, but were unable to damage schistosomula. However, when a suboptimal ECP concentration (10(-6) M) was combined with neutroplasts or eosinoplasts, 43.9% +/- 8.5 (n = 7) and 24.7% +/- 9.8 (n = 3), respectively, of the schistosomula were killed. Oxygen metabolites were responsible for the synergism, because cytoplasts from a patient with chronic granulomatous disease were unable to act in synergy with ECP. In contrast to ECP, no synergism was found between cytoplasts and MBP (10(-6) to 2 X 10(-5)M). These results show that oxygen metabolites are important for the killing of schistosomula by lowering the concentration of ECP needed to inflict damage.  相似文献   

9.
The eosinophil granule contains a series of basic proteins, including major basic protein, eosinophil peroxidase, eosinophil-derived neurotoxin (EDN), and eosinophil cationic protein (ECP). Both EDN and ECP are neurotoxins and helminthotoxins. Comparison of the partial N-terminal amino acid sequences of EDN and ECP showed 67% identity; surprisingly, they also showed structural homology to pancreatic ribonuclease (RNase). Therefore, we determined whether EDN and ECP possess RNase enzymatic activity. By spectrophotometric assay of acid soluble nucleotides formed from yeast RNA, purified EDN showed RNase activity similar to bovine pancreatic RNase, whereas ECP was 50 to 100 times less active. The RNase activity associated with ECP was not significantly inhibited after exposure of ECP to polyclonal or monoclonal antibody to EDN. These results indicate that EDN and ECP both possess RNase activity, the RNase activity of EDN and ECP is specific, and EDN and ECP have maintained not only structural but also functional homology to pancreatic RNase.  相似文献   

10.
We have analysed the relationship of blood eosinophil count and serum eosinophil cationic protein (ECP) levels in patients with acute and chronic idiopathic urticaria. The ECP levels and eosinophil counts were measured in the peripheral blood of 15 patients with acute urticaria, 25 with chronic idiopathic urticaria and 10 normal healthy subjects. Blood eosinophil counts and serum ECP levels increased in all patients with acute urticaria. Concerning patients affected by chronic urticaria, taking into account the recrudescence of the disease at the moment of taking the blood sample, only symptomatic patients showed increased eosinophil blood values whereas serum ECP levels were increased both in symptomatic and asymptomatic patients. Furthermore, serum ECP levels in chronic urticaria did not correlate with the peripheral eosinophil counts, as they did in acute urticaria. The results of the present study indicate that eosinophils may play a role in the inflammatory mechanisms in patients with acute and chronic urticaria showing a positive correlation between serum ECP levels and disease activity.  相似文献   

11.
The production of eosinophil cationic protein (ECP) in IgE-mediated diseases has been associated mainly with eosinophils, although no IgE-dependent ECP release has been observed in these cells. Because there is increasing evidence of neutrophil participation in allergic processes, we have examined whether human neutrophils from allergic patients were able to produce ECP by an IgE-dependent mechanism. After challenge with specific Ags to which the patients were sensitized, ECP release was detected in the culture medium. Furthermore, intracellular protein was detected by flow cytometry, immunofluorescence staining, and Western blotting. Expression at both mRNA and de novo protein synthesis were detected, respectively, by RT-PCR and radiolabeling with (35)S. Ag effect was mimicked by cell treatment with anti-IgE Abs or Abs against FcepsilonRI and galectin-3 (FcepsilonRI>galectin-3), but not against FcepsilonRII. These observations represent a novel view of neutrophils as possible source of ECP in IgE-dependent diseases.  相似文献   

12.
The eosinophil granule proteins, major basic protein (MBP) and eosinophil cationic protein (ECP), activate mast cells during inflammation; however the mechanism responsible for this activity is poorly understood. We found that some theoretical tryptase-digested fragments of MBP and ECP induced degranulation of human cord blood-derived mast cells (HCMCs). The spectrum of activities of these peptides in HCMCs coincided with intracellular Ca2+ mobilization activities in Mas-related G-protein coupled receptor family member X2 (MRGPRX2)-expressing HEK293 cells. Two peptides corresponding to MBP residues 99–110 (MBP (99–110)) and ECP residues 29–45 (ECP (29–45)), respectively, induced degranulation of HCMCs and intracellular Ca2+ mobilization in MRGPRX2-expressing HEK293 cells in a concentration-dependent manner. Stimulation with MBP (99–110) or ECP (29–45) induced the production of prostaglandin D2 by HCMCs. The activities of MBP (99–110) and ECP (29–45) in both HCMCs and MRGPRX2-expressing HEK293 cells were inhibited by MRGPRX2-specific antagonists. In conclusion, these results indicated that MBP and ECP fragments activate HCMCs, and it may occur via MRGPRX2. Our findings suggest that tryptase-digested fragments of eosinophil cationic proteins acting via the MRGPRX2 pathway may further our understanding of mast cell/eosinophil communication.  相似文献   

13.
Eosinophils contain in their granules eosinophil cationic protein (ECP) and other basic proteins that have been implicated in immunity to parasites and pathophysiology of chronic allergic responses. In a model of eosinophil degranulation, we show that eosinophils release ECP upon short-term GM-CSF priming and stimulation with either platelet-activating factor (PAF) or the anaphylatoxin C5a, but not eotaxin. Restimulation with the same agonist (PAF or C5a) was unsuccessful as assessed by monitoring intracellular calcium concentration and ECP release. In contrast, upon an intermediate washing step, eosinophils rapidly transduced PAF and C5a signals followed by significant ECP releases. Ligand-binding studies demonstrated that only a proportion of PAF receptors is internalized upon cell stimulation and that washing of the cells removes the agonist from the cell surface. Upon repetitive stimulation, eosinophils with less than 50% of the original ECP content were obtained. Such eosinophils did not increase cellular ECP levels even in the presence of the eosinophil survival factor GM-CSF in overnight cultures. In vivo studies revealed that eosinophils always express detectable amounts of ECP under chronic inflammatory conditions. In conclusion, we have shown that eosinophils maintain their capacity to degranulate upon repetitive stimulation with the same agonist as long as the receptor is not occupied from a previous stimulation. The cellular content of ECP appears to be a no limiting factor in the case of repetitive stimulation, implying that mature eosinophils may not require a significant ECP resynthesis.  相似文献   

14.
The aim of this study was to assess the involvement of eosinophil cationic protein, a marker of eosinophil activation, in the development of in-stent restenosis after drug-eluting stent implantation. Follow-up angiography at 6 to 12?months was performed in 32 patients who were treated with percutaneous coronary intervention and implantation of sirolimus-eluting stents. Blood plasma levels of eosinophil cationic protein (ECP) and total immunoglobulin E (IgE) were measured by enzyme-linked immunosorbent assay and the level of C-reactive protein (hs-CRP) by high-sensitivity nephelometry. According to angiography data, in-stent restenosis occurred in 13 patients, while 19 patients did not develop it. There were no differences between the hs-CRP and IgE levels in patients with or without restenosis. In contrast, ECP level was higher in patients with restenosis compared with that in patients without restenosis [17.7?ng/mL (11.2-24.0) vs. 9.0?ng/mL (6.4-12.9), p?= 0.017]. The incidence of in-stent restenoses was 63% in patients with ECP level higher than or equal to 11?ng/mL, and 19% in patients with an ECP level lower than 11?ng/mL (p?= 0.019). These findings suggest that elevated eosinophil activation may play an important role in the pathogenesis of in-stent restenosis after implantation of drug-eluting stents.  相似文献   

15.
The kinetics of human eosinophil activation and granule secretion initiated by interaction with Trypanosoma cruzi amastigotes was studied by using a monoclonal IgG1 antibody (termed EG2) that is specific for an epitope present only in the secreted forms of both eosinophil cationic protein (ECP) and the eosinophil protein X (EP-X), and hence not detectable in unstimulated resting eosinophils. Studies were carried out by using electron microscopy and indirect immunofluorescence. In the electron microscopy studies, deposits of protein A-gold particles in parasite-containing eosinophils that had been incubated previously with EG2 antibody were first detected 4 hr after initiation of the eosinophil-amastigote interaction. Control tests performed with a monoclonal IgG1 unreactive with eosinophils showed no deposition of protein A-gold particles. EG2 antibody binding was confined to the crystalloid granule matrix, where ECP and EP-X are known to be stored. A similar kinetic pattern of ECP/EP-X solubilization and secretion was confirmed by the results of the indirect immunofluorescence experiments also showing the binding of EG2 antibody after 4 hr of cell-parasite interaction. The kinetics of ECP/EP-X solubilization and secretion paralleled the kinetics of destruction of internalized amastigotes, suggesting a role for these basic proteins in parasite killing. Consistent with this notion was the detection of ECP/EP-X in the fluid of phagocytic vacuoles containing amastigotes and associated with the ingested organisms at the same time as the parasites began to show structural alterations. These results outlined the kinetics of eosinophil activation in terms of the time required for mobilization of two basic proteins associated with eosinophil secretion that are known to be biologically active.  相似文献   

16.
Eosinophil cationic protein (ECP), one of the major components of basic granules of eosinophils, is cytotoxic to tracheal epithelium. However, the extent of this effect on other cell types has not been evaluated in vitro. In this study, we evaluated the effect of ECP on 13 mammalian cell lines. ECP inhibited the growth of several cell lines including those derived from carcinoma and leukemia in a dose-dependent manner. The IC(50) values on A431 cells, MDA-MB-453 cells, HL-60 cells and K562 cells were estimated to be approximately 1-5 microm. ECP significantly suppressed the size of colonies of A431 cells, and decreased K562 cells in G1/G0 phase. However, there was little evidence that ECP killed cells in either cell line. These effects of ECP were not enhanced by extending its N-terminus. Rhodamine B isothiocyanate-labeled ECP started to bind to A431 cells after 0.5 h and accumulated for up to 24 h, indicating that specific affinity for the cell surface may be important. The affinity of ECP for heparin was assessed and found to be reduced when tryptophan residues, one of which is located at a position in the catalytic subsite of ribonuclease in ECP, were modified. The growth-inhibitory effect was also attenuated by this modification. These results suggest that growth inhibition by ECP is dependent on cell type and is cytostatic.  相似文献   

17.
Among 67 French patients presenting a toxocaral infection, various demographic, environmental, clinical and laboratory parameters (blood eosinophil count, eosinophil cationic protein (ECP), serum total IgE, specific IgE against common inhalant allergens, specific IgE and IgG4 against Toxocara excretory-secretory antigens) were investigated. Correlation studies and logistic regression analyses were conducted, testing elevated levels of ECP, specific anti-Toxocara IgE or IgG4 as outcome variables An elevated ECP level was significantly associated with both cough and rhinitis, a high level of specific anti-Toxocara IgE with itchy rashes and possible atopic status, and an increase of specific anti-Toxocara IgG4 with rural residence.  相似文献   

18.
S Sorrentino  D G Glitz 《FEBS letters》1991,288(1-2):23-26
The eosinophil cationic protein (ECP), a potent helminthotoxin with considerable neurotoxic activity, was recently shown to also have ribonucleolytic activity. In this work the substrate preference of ECP ribonuclease action was studied in detail. With single-stranded RNA or synthetic polyribonucleotide substrates ECP showed significant but low activity, 70- to 200-fold less than that of bovine RNase A. ECP hydrolyzed RNA more rapidly than it did any synthetic polynucleotide. Poly(U) was degraded more rapidly than poly(C), and poly(A) and double-stranded substrates were extremely resistant. Defined low molecular weight substrates in the form of the 16 dinucleoside phosphates (NpN') and uridine and cytidine 2',3'-cyclic phosphates were tested, and none showed hydrolysis by ECP at a significant rate. The results link ECP ribonucleolytic activity to the 'non-secretory' liver-type enzymes rather than to the 'secretory' pancreatic-type RNases.  相似文献   

19.
The interaction between the highly basic and cytotoxic eosinophil cationic protein (ECP) and human plasma proteins is described. The major plasma protein responsible for complex-formation with ECP was shown to be the 'fast' form of alpha 2-macroglobulin (alpha 2M). Large amounts of complexes were observed in a serum obtained from a patient with hypereosinophilic syndrome. The amount of complexes that could be generated in vitro in normal fresh serum was rather low and was even less in fresh citrated plasma. Complex-formation between the non-proteolytic ECP and alpha 2M was augmented in the presence of methylamine. Binding of ECP to alpha 2M was also induced by the proteinases cathepsin G and thrombin, and the binding was competitive with cathepsin G. Methylamine and the proteinases seem to share a common mechanism in inducing binding of ECP. The nature of the ECP-alpha 2M interaction is non-covalent, but withstands high salt concentrations. The interaction with alpha 2M may reflect a mechanism by which the organism protects itself against the deleterious effects of the highly cytotoxic protein ECP.  相似文献   

20.
The localization of the guinea pig eosinophil major basic protein (MBP) within the cell was investigated by the use of immunoelectron microscopy and by isolation of the granule crystalloids. First, by immunoperoxidase electron microscopy, we found that the MBP of eosinophil granules is contained within the crystalloid core of the granule. Specific staining of cores was present when rabbit antiserum to MBP was used as the first stage antibody in a double antibody staining procedure, whereas staining was not seen when normal rabbit serum was used as the first stage antibody. Second, crystalloids were isolated from eosinophil granules by disruption in 0.1% Triton X-100 and centrifugation through a cushion of 50% sucrose. Highly purified core preparations yielded essentially a single band when analyzed by electrophoresis on polyacrylamide gels containing 1% sodium dodecyl sulfate (SDS). The E1%1cm of the core protein was 26.8 +/- 1.0 (X +/- SEM); the E1%1cm for the MBP was 26.3. The core protein could not be distinguished from the MBP by radioimmunoassay (RIA) and essentially all of the protein in the core preparations could be accounted for as MBP. The results indicate that the MBP is contained in the core of the guinea pig eosinophil granule and that it is probably the only protein present in the core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号