首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents and recommends 1) an empirically based new model quantifying the relationship between salinity, suspended particulate matter (SPM) and water clarity (as given by the Secchi depth) and (2) an empirical model for oxygen saturation in the deep-water zone for coastal areas (O2Sat in %). This paper also discusses the many and important roles that SPM plays in aquatic ecosystems and presents comparisons between SPM concentrations in lakes, rivers and coastal areas. Such comparative studies are very informative but not so common. The empirical O2Sat model explains (statistically) 80% of the variability in mean O2Sat values among 23 Baltic coastal areas. The model is based on data on sedimentation of SPM, the percentage of ET areas (areas where erosion and transportation of fine sediments occur), the theoretical deep-water retention time and the mean coastal depth. These two new models have been incorporated into an existing dynamic model for SPM in coastal areas that quantifies all important fluxes of SPM into, within and from coastal areas, such as river inflow, primary production, resuspension, sedimentation, mixing, mineralisation and the SPM exchange between the given coastal area and the sea (or adjacent coastal areas). The modified dynamic SPM model with these two new sub-models has been validated (blind tested) with very good results; the model predictions for Secchi depth, O2Sat and sedimentation are within the uncertainty bands of the empirical data.  相似文献   

2.
A better understanding of the local variability in land‐atmosphere carbon fluxes is crucial to improving the accuracy of global carbon budgets. Operational satellite data backed by ground measurements at Fluxnet sites proved valuable in monitoring local variability of gross primary production at highly resolved spatio‐temporal resolutions. Yet, we lack similar operational estimates of ecosystem respiration (Re) to calculate net carbon fluxes. If successful, carbon fluxes from such a remote sensing approach would form an independent and sought after measure to complement widely used dynamic global vegetation models (DGVMs). Here, we establish an operational semi‐empirical Re model, based only on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) with a resolution of 1 km and 8 days. Fluxnet measurements between 2000 and 2009 from 100 sites across North America and Europe are used for parameterization and validation. Our analysis shows that Re is closely tied to temperature and plant productivity. By separating temporal and intersite variation, we find that MODIS land surface temperature (LST) and enhanced vegetation index (EVI) are sufficient to explain observed Re across most major biomes with a negligible bias [R² = 0.62, RMSE = 1.32 (g C m?2 d?1), MBE = 0.05 (g C m?2 d?1)]. A comparison of such satellite‐derived Re with those simulated by the DGVM LPJmL reveals similar spatial patterns. However, LPJmL shows higher temperature sensitivities and consistently simulates higher Re values, in high‐latitude and subtropical regions. These differences remain difficult to explain and they are likely associated either with LPJmL parameterization or with systematic errors in the Fluxnet sampling technique. While uncertainties remain with Re estimates, the model formulated in this study provides an operational, cross‐validated and unbiased approach to scale Fluxnet Re to the continental scale and advances knowledge of spatio‐temporal Re variability.  相似文献   

3.
4.
Methane (CH4) fluxes from world rivers are still poorly constrained, with measurements restricted mainly to temperate climates. Additional river flux measurements, including spatio‐temporal studies, are important to refine extrapolations. Here we assess the spatio‐temporal variability of CH4 fluxes from the Amazon and its main tributaries, the Negro, Solimões, Madeira, Tapajós, Xingu, and Pará Rivers, based on direct measurements using floating chambers. Sixteen of 34 sites were measured during low and high water seasons. Significant differences were observed within sites in the same river and among different rivers, types of rivers, and seasons. Ebullition contributed to more than 50% of total emissions for some rivers. Considering only river channels, our data indicate that large rivers in the Amazon Basin release between 0.40 and 0.58 Tg CH4 yr?1. Thus, our estimates of CH4 flux from all tropical rivers and rivers globally were, respectively, 19–51% to 31–84% higher than previous estimates, with large rivers of the Amazon accounting for 22–28% of global river CH4 emissions.  相似文献   

5.
6.
7.
8.
Natural soil pipes, which have been widely reported in peatlands, have been shown to contribute significantly to total stream flow. Here, using measurements from eight pipe outlets, we consider the role of natural pipes in the transport of fluvial carbon within a 17.4‐ha blanket‐peat‐covered catchment. Concentrations of dissolved and particulate organic carbon (DOC and POC) from pipe waters varied greatly between pipes and over time, ranging between 5.3 and 180.6 mg L?1 for DOC and 0.08 and 220 mg L?1 for POC. Pipes were important pathways for peatland fluvial carbon export, with fluxes varying between 0.6 and 67.8 kg yr?1 (DOC) and 0.1 and 14.4 kg yr?1 (POC) for individual pipes. Pipe DOC flux was equivalent to 20% of the annual DOC flux from the stream outlet while the POC flux from pipes was equivalent to 56% of the annual stream POC flux. The proportion of different forms of aquatic carbon to total aquatic carbon flux varied between pipes, with DOC ranging between 80.0% and 91.2%, POC from 3.6% to 17.1%, dissolved CO2‐C from 2.4% to 11.1% and dissolved CH4‐C from 0.004% to 1.3%. The total flux of dissolved CO2‐C and CH4‐C scaled up to all pipe outlets in the study catchment was estimated to be 89.4 and 3.6 kg yr?1 respectively. Overall, pipe outlets produced discharge equivalent to 14% of the discharge in the stream but delivered an amount of aquatic carbon equivalent to 22% of the aquatic carbon flux at the catchment outlet. Pipe densities in blanket peatlands are known to increase when peat is affected by drainage or drying. Hence, environmental change in many peatlands may lead to an increase in aquatic carbon fluxes from natural pipes, thereby influencing the peatland carbon balance and downstream ecological processes.  相似文献   

9.
10.
The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the ‘four per mil’ initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). Based on data‐driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates <0.05 Mg C ha?1 yr?1, although some hot‐spot areas showed eroded SOC >0.45 Mg C ha?1 yr?1. In comparison with a baseline without erosion, the model suggested an erosion‐induced sink of atmospheric C consistent with previous empirical‐based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of ?2.28 and +0.79 Tg yr?1 of CO2eq, respectively, depending on the value for the short‐term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.  相似文献   

11.
We used a land surface model to quantify the causes and extents of biases in terrestrial gross primary production (GPP) due to the use of meteorological reanalysis datasets. We first calibrated the model using meteorology and eddy covariance data from 25 flux tower sites ranging from the tropics to the northern high latitudes and subsequently repeated the site simulations using two reanalysis datasets: NCEP/NCAR and CRUNCEP. The results show that at most sites, the reanalysis‐driven GPP bias was significantly positive with respect to the observed meteorology‐driven simulations. Notably, the absolute GPP bias was highest at the tropical evergreen tree sites, averaging up to ca. 0.45 kg C m?2 yr?1 across sites (ca. 15% of site level GPP). At the northern mid‐/high‐latitude broadleaf deciduous and the needleleaf evergreen tree sites, the corresponding annual GPP biases were up to 20%. For the nontree sites, average annual biases of up to ca. 20–30% were simulated within savanna, grassland, and shrubland vegetation types. At the tree sites, the biases in short‐wave radiation and humidity strongly influenced the GPP biases, while the nontree sites were more affected by biases in factors controlling water stress (precipitation, humidity, and air temperature). In this study, we also discuss the influence of seasonal patterns of meteorological biases on GPP. Finally, using model simulations for the global land surface, we discuss the potential impacts of site‐level reanalysis‐driven biases on the global estimates of GPP. In a broader context, our results can have important consequences on other terrestrial ecosystem fluxes (e.g., net primary production, net ecosystem production, energy/water fluxes) and reservoirs (e.g., soil carbon stocks). In a complementary study (Barman et al., 2013 ), we extend the present analysis for latent and sensible heat fluxes, thus consistently integrating the analysis of climate‐driven uncertainties in carbon, energy, and water fluxes using a single modeling framework.  相似文献   

12.
The fish communities of 371 sites from 4 natural regions of the Seine River basin were studied. The sites were located from small to medium size rivers (catchment area : 5 to 3895 km2). We examined the differences between local communities according to river size (estimated by catchment area) and region. In the Seine River basin, fish communities follow a general organisation rule: total species richness increases with river size and importance of limnophilic species versus rheophilic ones increases from upstream to downstream. However, fish communities show differences of total species richness, species richness of reproductive groups and species composition between the four natural regions of the basin. Particularly, river size and regional organisation of environmental factors interact on species composition of communities and several regional patterns of longitudinal changes of fish communities are identified. The origin and range of regional differences of fish communities are discussed according to historical and environmental factors.  相似文献   

13.
14.
Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long‐term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. ?1.0 to 12.6 mg m?2 h?1 in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300–400 mg m?2 h?1) and lowest during the wet period (60–132 mg m?2 h?1) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within‐site variability in gas release but the effect was site‐specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model.  相似文献   

15.
Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model‐based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above‐ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1‐km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old‐growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr?1 (98 TgC yr?1 in forest biomass and 105 TgC yr?1 in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data.  相似文献   

16.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

17.
1. The microbial metabolism of organic matter in rivers has received little study compared with that of small streams. Therefore, we investigated the rate and location of bacterial production in a sixth‐order lowland river (Spree, Germany). To estimate the contribution of various habitats (sediments, epiphyton, and the pelagic zone) to total bacterial production, we quantified the contribution of these habitats to areal production by bacteria. 2. Large areas of the river bottom were characterized by loose and shifting sands of relatively homogenous particle size distribution. Aquatic macrophytes grew on 40% of the river bottom. Leaf areas of 2.8 m2 m?2 river bottom were found in a 6.6 km river stretch. 3. The epiphyton supported a bacterial production of 5–58 ng C cm?2 h?1. Bacterial production in the pelagic zone was 0.9–3.9 μg C L?1 h?1, and abundance was 4.0–7.8 × 109 cells L?1. Bacterial production in the uppermost 2 cm of sediments ranged from 1 to 8 μg C cm?3 h?1, and abundance from 0.84 to 6.7 × 109 cells cm?3. Bacteria were larger and more active in sediments than in the pelagic zone. 4. In spite of relatively low macrophyte abundance, areal production by bacteria in the pelagic zone was only slightly higher than in the epiphyton. Bacterial biomass in the uppermost 2 cm of sediments exceeded pelagic biomass by factors of 6–22, and sedimentary bacterial production was 17–35 times higher than in the overlying water column. 5. On a square meter basis, total bacterial production in the Spree was clearly higher than primary productivity. Thus, the lowland river Spree is a heterotrophic system with benthic processes dominating. Therefore, sedimentary and epiphytic bacterial productivity form important components of ecosystem carbon metabolism in rivers and shallow lakes. 6. The sediments are focal sites of microbial degradation of organic carbon in a sand‐bottomed lowland river. The presence of a lowland river section within a river continuum probably greatly changes the geochemical fluxes within the river network. This implies that current concepts of longitudinal biogeochemical relationships within river systems have to be revised.  相似文献   

18.
The catchment of the Humber Estuary drains approximately 20% of the land area of England via two main rivers, the Trent and the Ouse, and a number of tributaries. The catchment is home to major metropolitan and industrial centres, as well as to extensive areas of agricultural land; for this reason, the river and estuarine systems have been subject to considerable anthropogenic inputs. The Humber Estuary is one of the largest U.K. estuaries and the major U.K. freshwater input to the North Sea. The U.K. Natural Environment Research Council (NERC) Land Ocean Interaction Study (LOIS), which combined extensive physical and biogeochemical measurements with an integrated modelling programme, was established to examine the transport and fate of nutrients and other constituents through the land-sea boundary. In this paper, a model of nitrogen (nitrate, nitrite, ammonium, particulate nitrogen) transport and cycling in the Humber Estuary, calibrated on the basis of measured constituent concentrations at its riverine and marine boundaries, is linked off-line to a Humber catchment and rivers model of nitrogen transport, which furnished simulated constituent values at the tidal limits, and the resulting estuarine nitrogen profiles compared to those of the standalone estuarine model. The estuarine model is then re-run using simulated concentration values at the tidal limits from catchment-river model simulations incorporating realistic changes in agricultural fertiliser inputs and climate forcing functions. The standalone estuarine model simulation estimated nitrate+nitrite (total nitrogen) export to the North Sea to be ca. 53000 t in 1994 and 44000 t in 1995. Following linkage of the estuarine and catchment-river models, the estimated fluxes for these years increased by 20–30%, {relative to the standalone simulation}. Higher {winter} riverine flows largely accounted for this difference. The altered flows also markedly changed the simulated concentrations and distributions of suspended particulate matter (SPM) within the estuary, indicating strongly that the transport and fluxes of particle-reactive and particle-associated constituents would show measurable differences. Scatter in the measured SPM data precluded identification of the more precise simulation run, however. Subsequent simulations using the linked models estimated that a 50% reduction in artificial fertiliser applications within the catchment gave a 10–15% decrease in nitrogen loads to the North Sea, relative to the 1994–95 input, whilst forcing the catchment model with a climate perhaps appropriate for the mid-21st century yielded nitrogen fluxes that were similar to those of the mid-1990s.  相似文献   

19.
Effective vegetation classification schemes identify the processes determining species assemblages and support the management of protected areas. They can also provide a framework for ecological research. In the tropics, elevation‐based classifications dominate over alternatives such as river catchments. Given the existence of floristic data for many localities, we ask how useful floristic data are for developing classification schemes in species‐rich tropical landscapes and whether floristic data provide support for classification by river catchment. We analyzed the distribution of vascular plant species within 141 plots across an elevation gradient of 130 to 3200 m asl within La Amistad National Park. We tested the hypothesis that river catchment, combined with elevation, explains much of the variation in species composition. We found that annual mean temperature, elevation, and river catchment variables best explained the variation within local species communities. However, only plots in high‐elevation oak forest and Páramo were distinct from those in low‐ and mid‐elevation zones. Beta diversity did not significantly differ in plots grouped by elevation zones, except for low‐elevation forest, although it did differ between river catchments. None of the analyses identified discrete vegetation assemblages within mid‐elevation (700–2600 m asl) plots. Our analysis supports the hypothesis that river catchment can be an alternative means for classifying tropical forest assemblages in conservation settings.  相似文献   

20.
Nearly 5000 chamber measurements of CH4 flux were collated from 21 sites across the United Kingdom, covering a range of soil and vegetation types, to derive a parsimonious model that explains as much of the variability as possible, with the least input requirements. Mean fluxes ranged from ?0.3 to 27.4 nmol CH4 m?2 s?1, with small emissions or low rates of net uptake in mineral soils (site means of ?0.3 to 0.7 nmol m?2 s?1) and much larger emissions from organic soils (site means of ?0.3 to 27.4 nmol m?2 s?1). Less than half of the observed variability in instantaneous fluxes could be explained by independent variables measured. The reasons for this include measurement error, stochastic processes and, probably most importantly, poor correspondence between the independent variables measured and the actual variables influencing the processes underlying methane production, transport and oxidation. When temporal variation was accounted for, and the fluxes averaged at larger spatial scales, simple models explained up to ca. 75% of the variance in CH4 fluxes. Soil carbon, peat depth, soil moisture and pH together provided the best sub‐set of explanatory variables. However, where plant species composition data were available, this provided the highest explanatory power. Linear and nonlinear models generally fitted the data equally well, with the exception that soil moisture required a power transformation. To estimate the impact of changes in peatland water table on CH4 emissions in the United Kingdom, an emission factor of +0.4 g CH4 m?2 yr?1 per cm increase in water table height was derived from the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号