首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modification of ethanol productivity and yield, using mineral medium supplemented with glucose or xylose as carbon sources, was studied in ethanologenic Escherichia coli KO11 by increasing the activity of five key carbon metabolism enzymes. KO11 efficiently converted glucose or xylose to ethanol with a yield close to 100% of the theoretical maximum when growing in rich medium. However, when KO11 ferments glucose or xylose in mineral medium, the ethanol yields decreased to only 70 and 60%, respectively. An increase in GALP(Ec) (permease of galactose-glucose-xylose) or PGK(Ec) (phosphoglycerate kinase) activities did not change xylose or glucose and ethanol flux. However, when PDC(Zm) (pyruvate decarboxylase from Zymomonas mobilis) activity was increased 7-fold, the yields of ethanol from glucose or xylose were increased to 85 and 75%, respectively, and organic acid formation rates were reduced. Furthermore, as a response to a reduction in acetate and ATP yield, and a limited PDC(Zm) activity, an increase in PFK(Ec) (phosphofructokinase) or PYK(Bs) (pyruvate kinase from Bacillus stearothermophilus) activity drastically reduced glucose or xylose consumption and ethanol formation flux. This experimental metabolic control analysis showed that ethanol flux in KO11 is negatively controlled by phosphofructokinase and pyruvate kinase, and positively influenced by the PDC(Zm) activity level.  相似文献   

2.
Furfural is an inhibitory side product formed during the depolymerization of hemicellulose by mineral acids. Genomic libraries from three different bacteria (Bacillus subtilis YB886, Escherichia coli NC3, and Zymomonas mobilis CP4) were screened for genes that conferred furfural resistance on plates. Beneficial plasmids containing the thyA gene (coding for thymidylate synthase) were recovered from all three organisms. Expression of this key gene in the de novo pathway for dTMP biosynthesis improved furfural resistance on plates and during fermentation. A similar benefit was observed by supplementation with thymine, thymidine, or the combination of tetrahydrofolate and serine (precursors for 5,10-methylenetetrahydrofolate, the methyl donor for ThyA). Supplementation with deoxyuridine provided a small benefit, and deoxyribose was of no benefit for furfural tolerance. A combination of thymidine and plasmid expression of thyA was no more effective than either alone. Together, these results demonstrate that furfural tolerance is increased by approaches that increase the supply of pyrimidine deoxyribonucleotides. However, ThyA activity was not directly affected by the addition of furfural. Furfural has been previously shown to damage DNA in E. coli and to activate a cellular response to oxidative damage in yeast. The added burden of repairing furfural-damaged DNA in E. coli would be expected to increase the cellular requirement for dTMP. Increased expression of thyA (E. coli, B. subtilis, or Z. mobilis), supplementation of cultures with thymidine, and supplementation with precursors for 5,10-methylenetetrahydrofolate (methyl donor) are each proposed to increase furfural tolerance by increasing the availability of dTMP for DNA repair.  相似文献   

3.
The production of ethanol from xylose by ethanologenic Escherichia coli strain KO11 was improved by adding various medium supplements (acetate, pyruvate, and acetaldehyde) that prolonged the growth phase by increasing cell yield and volumetric productivity (approximately twofold). Although added pyruvate and acetaldehyde were rapidly metabolized, the benefit of these additives continued throughout fermentation. Both additives increased the levels of extracellular acetate through different mechanisms. Since acetate can be reversibly converted to acetyl coenzyme A (acetyl-CoA) by acetate kinase and phosphotransacetylase, the increase in cell yield caused by each of the three supplements is proposed to result from an increase in the pool of acetyl-CoA. A similar benefit was obtained by inactivation of acetate kinase (ackA), reducing the production of acetate (and ATP) and sparing acetyl-CoA for biosynthetic needs. Inactivation of native E. coli alcohol-aldehyde dehydrogenase (adhE), which uses acetyl-CoA as an electron acceptor, had no beneficial effect on growth, which was consistent with a minor role for this enzyme during ethanol production. Growth of KO11 on xylose appears to be limited by the partitioning of carbon skeletons into biosynthesis rather than the level of ATP. Changes in acetyl-CoA production and consumption provide a useful approach to modulate carbon partitioning. Together, these results demonstrate that xylose fermentation to ethanol can be improved in KO11 by redirecting small amounts of pyruvate away from fermentation products and into biosynthesis. Though negligible with respect to ethanol yield, these small changes in carbon partitioning reduced the time required to complete the fermentation of 9.1% xylose in 1% corn steep liquor medium from over 96 h to less than 72 h.  相似文献   

4.
The recombinant Escherichia coli B strain KO11, containing chromosomally-integrated genes for ethanol production, was developed for use in lignocellulose-to-ethanol bioconversion processes but suffers from instability in continuous culture and a low ethanol tolerance compared to yeast. Here we report the ability cell immobilization to improve its phenotypic stability and ethanol tolerance during continuous culture on a 50 g/L xylose feed. Experiments conducted in a vertical tubular fermentor operated as a liquid-fluidized bed with the cells immobilized on porous glass microspheres were compared to control experiments in the same reactor operated as a chemostat without the support particles. Without cell immobilization the ethanol yield fell sharply following start-up, declining to 60% of theoretical after only 8-9 days of continuous fermentation. While immobilizing the cells did not prevent this decline, it delayed its onset and slowed its rate. With immobilization, a stable high ethanol yield (>85%) was maintained for at least 10 days, thereafter declining slowly, but remaining above 70% even after up to 40 days of fermentation. The ethanol tolerance of E. coli KO11 cells was substantially increased by immobilization on the glass microspheres. In ethanol tolerance tests, immobilized cells released from the microspheres had survival rates 2.3- to 15-fold higher than those of free cells isolated from the same broth. Immobilization is concluded to be an effective means of increasing ethanol tolerance in E. coli KO11. While immobilization was only partially effective in combating its phenotypic instability, further improvements can be expected following optimization of the immobilization conditions.  相似文献   

5.
Nucleotides that contribute to the identity of Escherichia coli tRNA(Phe)   总被引:8,自引:0,他引:8  
A series of sequence variants of amber suppressor genes of tRNA(Phe) were synthesized in vitro and cloned in Escherichia coli to examine the contributions of individual nucleotides to identity for amino acid acceptance. Three different but complementary types of tRNA variants were constructed. The first involved the substitution of base-pairs on the cloverleaf stem regions of the E. coli tRNA(Phe). The second type of variant involved total gene synthesis based on wild-type tRNA(Phe) sequences found in Bacillus subtilis and in Halobacterium volcanii. In the third type of variant, the identity of E. coli tRNALys was changed to that of tRNA(Phe). The nucleotides which are important for tRNA(Phe) identity in E. coli are located on the corner of the L-shaped tRNA molecule, where the dihydrouridine loop interacts with the T loop, and extend to the interior opening of the anticodon stem and the adjoining variable loop. The nucleotide sequence on the dihydrouridine stem region, which joins the corner and stem regions, was not successfully studied though it may contribute to tRNA(Phe) identity. The fourth nucleotide from the 3' end of tRNA(Phe) has some importance for identity.  相似文献   

6.
Escherichia coli KO11, carrying the ethanol pathway genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) from Zymomonas mobilis integrated into its chromosome, has the ability to metabolize pentoses and hexoses to ethanol, both in synthetic medium and in hemicellulosic hydrolysates. In the fermentation of sugar mixtures simulating hemicellulose hydrolysate sugar composition (10.0 g of glucose/l and 40.0 g of xylose/l) and supplemented with tryptone and yeast extract, recombinant bacteria produced 24.58 g of ethanol/l, equivalent to 96.4% of the maximum theoretical yield. Corn steep powder (CSP), a byproduct of the corn starch-processing industry, was used to replace tryptone and yeast extract. At a concentration of 12.5 g/l, it was able to support the fermentation of glucose (80.0 g/l) to ethanol, with both ethanol yield and volumetric productivity comparable to those obtained with fermentation media containing tryptone and yeast extract. Hemicellulose hydrolysate of sugar cane bagasse supplemented with tryptone and yeast extract was also readily fermented to ethanol within 48 h, and ethanol yield achieved 91.5% of the theoretical maximum conversion efficiency. However, fermentation of bagasse hydrolysate supplemented with 12.5 g of CSP/l took twice as long to complete. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
8.
For Escherichia coli, it has been assumed that L-alanine is synthesized by alanine-valine transaminase (AvtA) in conjunction with an unknown alanine aminotransferase(s). We isolated alanine auxotrophs from a prototrophic double mutant deficient in AvtA and YfbQ, a novel alanine aminotransferase, by chemical mutagenesis. A shotgun cloning experiment identified two genes, uncharacterized yfdZ and serC, that complemented the alanine auxotrophy. When the yfdZ- or serC-mutation was introduced into the double mutant, one triple mutant (avtA yfbQ yfdZ) showed alanine auxotrophy, and another (avtA yfbQ serC), prototrophy. In addition, we found that four independent alanine auxotrophs possessed a point mutation in yfdZ but not in serC. We also found that yfdZ expression was induced in minimal medium. Furthermore, yfbQ-bearing plasmid conferred the ability to excrete alanine on the mutant lacking D-amino acid dehydrogenase-encoding gene, dadA. From these results, we concluded that E. coli synthesizes L-alanine by means of three aminotransferases, YfbQ, YfdZ, and AvtA.  相似文献   

9.
Summary Ribosomal proteins S5 were isolated from E. coli B wild type and from a spectinomycin resistant mutant derived from it. After tryptic digestion the peptides were isolated and their amino acid compositions compared. An amino acid replacement, namely arginine by leucine, was found at the C-terminus of peptide T8. This result, together with our previous studies, shows that in spectinomycin resistant mutants the amino acid replacements are clustered within a very narrow region of protein S5.  相似文献   

10.
A transposon (Tn 10 dCam) insertion mutant of Escherichia coli K-12 was isolated that exhibited hypersensitivity to zinc(II) and cadmium(II) and, to a lesser extent, cobalt(II) and nickel (II). The mutated gene, located between 75.5 and 76.2 min on the chromosome, is named zntA (for Zn(II) transport or tolerance). The metal-sensitive phenotype was complemented by a genomic DNA clone mapping at 3677.90–3684.60 kb on the physical map. Insertion of a kanamycin resistance (KnR) cassette at a Sal  I site in a subcloned fragment generated a plasmid that partially complemented the zinc(II)-sensitive phenotype. DNA sequence analysis revealed that the KnR cassette was located within the putative promoter region of an ORF ( o732 or yhhO ) predicted to encode a protein of 732 amino acids, similar to cation transport P-type ATPases in the Cpx-type family. Inverse PCR and sequence analysis revealed that the Tn 10 dCam element was located within o732 in the genome of the zinc(II)-sensitive mutant. The zntA mutant had elevated amounts of intracellular and cell surface-bound Zn(II), consistent with the view that zntA + encodes a zinc(II) efflux protein. Exposure of the z ntA mutant to cobalt(II) and cadmium(II) also resulted in elevated levels of intracellular and cell surface-bound metal ions.  相似文献   

11.
In order to study the structural principles governing DNA polymerase fidelity we have measured the rates of insertion of incorrect nucleotides and the rates of extension from the resulting mismatched base pairs, catalyzed by the Klenow fragment of DNA polymerase I. Using a combination of semi-quantitative and qualitative approaches, we have studied each of the 12 possible mismatches in a variety of sequence contexts. The results indicate that Klenow fragment discriminates between mismatches largely on the basis of the identity of the mismatch, with the surrounding sequence context playing a significant, but secondary, role. For purine-pyrimidine and pyrimidine-pyrimidine mispairs, the relative ease of mismatch synthesis and extension can be rationalized using a simple geometrical model, with the important criterion being the extent to which the mismatched base pair can conform to normal DNA geometry. Essentially similar conclusions have been reached in studies of other polymerases, suggesting that this aspect of mispair geometry is sensed and responded to in a similar way by all polymerases. Purine-purine mismatches form a less cohesive class, showing more variable behavior from mispair to mispair, and a greater apparent susceptibility to sequence context effects. Comparison of our data with studies of other polymerases also suggests that different polymerases respond to purine-purine mismatches in distinct and characteristic ways. An extensive analysis of each of the four purine-purine mispairs in approximately 100 different sequence contexts suggests that the reaction is influenced both by the local DNA structure and by the ability of the mismatched terminus to undergo slippage.  相似文献   

12.
13.
Summary An Escherichia coli K12 mutant resistant to thymineless death (TLD) was isolated, and its genetic analysis led us to identify a new mutation (recQ1) located between corA and metE on the standard linkage map. The mutation was found to result in increased sensitivity to ultraviolet light and deficiency in conjugational recombination when placed in the recBC sbcB background, indicating that it blocked the RecF pathway of recobbination. It seemed likely that this mutation is also capable of causing partial resistance to TLD, but we reserve the possibility of a separate mutation closely linked to recQ1 giving rise to this phenotype. The original mutant was shown to carry an additional mutation probably in the vicinity of the uhp locus, which was also required for the full TLD resistance of the mutant to be expressed.Abbreviations UV ultraviolet light - NG N-methyl-N'-nitro-N-nitrosoguanidine - Km Kanamycin - Sm streptomycin - TLD thymineless death - 1 resistant - s sensitive  相似文献   

14.
Dang NX  Hincha DK 《Cryobiology》2011,62(3):188-193
Hydrophilins are a group of proteins that are present in all organisms and that have been defined as being highly hydrophilic and rich in glycine. They are assumed to play important roles in cellular dehydration tolerance. There are 12 genes in the yeast Saccharomyces cerevisiae that encode hydrophilins and most of these genes are stress responsive. However, the functional role of yeast hydrophilins, especially in desiccation and freezing tolerance, is largely unknown. Here, we selected six candidate hydrophilins for further analysis. All six proteins were predicted to be intrinsically disordered, i.e. to have no stable structure in solution. The contribution of these proteins to the desiccation and freezing tolerance of yeast was investigated in the respective knock-out strains. Only the disruption of the genes YJL144W and YMR175W (SIP18) resulted in significantly reduced desiccation tolerance, while none of the strains was affected in its freezing tolerance under our experimental conditions. Complementation experiments showed that yeast cells overexpressing these two genes were both more desiccation and freezing tolerant, confirming the role of these two hydrophilins in yeast dehydration stress tolerance.  相似文献   

15.
Several bacterial structures, processes and proteins are localized primarily to the poles of rod-shaped cells. To better understand this cellular organization, we devised a new method for identifying proteins that localize to the poles of Escherichia coli. Pole-derived membrane fragments were isolated by affinity capture of vesicles containing the chemotaxis protein, Tar; and for comparison, vesicles representing all parts of the cytoplasmic membrane were captured by expressing a Tar variant that was no longer pole-specific. A combination of one-dimensional SDS-PAGE and semi-quantitative mass spectrometry identified 31 proteins that were highly enriched in polar vesicles. Five were chemotaxis proteins known to be pole-specific and another, Aer, was an aerotaxis protein that had not yet been localized to the pole. The behaviour of these internal controls validated the overall approach. GFP-fused derivatives of four candidates (Aer, YqjD, TnaA and GroES) formed polar foci that were distinct from inclusion bodies. TnaA-GFP and GroES-GFP were functional, formed a single focus per cell, and competed for polar localization with the wild-type versions of these proteins. Polar localization of TnaA, GroES and YqjD was disrupted in cells lacking the MinCDE proteins, suggesting that this system may help localize proteins not involved in cell division.  相似文献   

16.
Earlier, we reported that the bacteriophage lambda P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this lambda P gene-mediated lethality. In this paper, we show that under the lambda P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94 % linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from lambda P gene-mediated killing and complements E. coli dnaAts46 at 42 degrees C. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to lambda P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.  相似文献   

17.
The human granulocyte colony stimulating factor (hG-CSF) plays an important role in hematopoietic cell proliferation/differentiation and has been widely used as a therapeutic agent for treating neutropenias. Nartograstim is a commercial G-CSF that presents amino acid changes in specific positions when compared to the wild-type form, which potentially increase its activity and stability. The aim of this work was to develop an expression system in Escherichia coli that leads to the production of large amounts of a recombinant hG-CSF (rhG-CSF) biosimilar to Nartograstim. The nucleotide sequence of hg-csf was codon-optimized for expression in E. coli. As a result, high yields of the recombinant protein were obtained with adequate purity, structural integrity and biological activity. This protein has also been successfully used for the production of specific polyclonal antibodies in mice, which could be used in the control of the expression and purification in an industrial production process of this recombinant protein. These results will allow the planning of large-scale production of this mutant version of hG-CSF (Nartograstim), as a potential new biosimilar in the market.  相似文献   

18.
19.
20.
Total proteins extracted from developmental mutants of Arabidopsis thaliana (L.) Heyhn. and from wild-type plants cultivated in the presence of various hormones were analyzed by two-dimensional (2-D) gel electrophoresis. Computer analysis of 2-D gels followed by a statistical treatment of data allowed us to build a phenogram that describes the biochemical distances between the different genotypes. Analysis of the 2-D electrophoresis data allowed us to discriminate mutants in agreement with phenotypical and physiological traits. This biochemical analysis helped us to develop a working hypothesis which led us to show that one developmental mutant (cri1 ) overaccumulates cytokinins. Received: 5 August 1996 / Accepted: 11 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号