首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duplex DNA fragments differing by single base substitutions can be separated by electrophoresis in denaturing gradient polyacrylamide gels, but only substitutions in a restricted part of the molecule lead to a separation (1). In an effort to circumvent this problem, we demonstrated that the melting properties and electrophoretic behavior of a 135 base pair DNA fragment containing a beta-globin promoter are changed by attaching a GC-rich sequence, called a 'GC-clamp' (2). We predicted that these changes should make it possible to resolve most, if not all, single base substitutions within fragments attached to the clamp. To test this possibility we examined the effect of several different single base substitutions on the electrophoretic behavior of the beta-globin promoter fragment in denaturing gradient gels. We find that the GC-clamp allows the separation of fragments containing substitutions throughout the promoter fragment. Many of these substitutions do not lead to a separation when the fragment is not attached to the clamp. Theoretical calculations and analysis of a large number of different mutations indicate that approximately 95% of all possible single base substitutions should be separable when attached to a GC-clamp.  相似文献   

2.
DNA molecules that differ by a single base-pair can be separated by denaturing gradient gel electrophoresis due to the sequence-specific melting properties of DNA. Base modifications such as methylation are also known to affect the melting temperature of DNA. We examined the final position of DNA fragments containing either 5-methyl-cytosine or 6-methyl-adenine in denaturing gradient gels. The presence of a single methylated base within an early melting domain resulted in a well-resolved shift in fragment position relative to the unmethylated sequence. In addition, fragments containing hemimethylated and fully methylated sites could be distinguished, and a proportionally larger shift was observed with an increasing number of methylated bases. Denaturing gradient gel electrophoresis thus provides a sensitive method for analyzing the methylation state of DNA, which is not dependent on the presence of restriction enzyme cleavage sites. We also demonstrate that denaturing gradient gel electrophoresis can be used to obtain a quantitative estimate of the change in helix stability caused by modification of one or two bases in a complex DNA sequence. Such estimates should allow more accurate modeling of melting of natural DNA sequences.  相似文献   

3.
A computer program was developed to automate the selection of DNA fragments for detecting mutations within a long DNA sequence by denaturing gel electrophoresis methods. The program, MELTSCAN, scans through a user specified DNA sequence calculating the melting behavior of overlapping DNA fragments covering the sequence. Melting characteristics of the fragments are analyzed to determine the best fragment for detecting mutations at each base pair position in the sequence. The calculation also determines the optimal fragment for detecting mutations within a user specified mutational hot spot region. The program is built around the statistical mechanical model of the DNA melting transition. The optimal fragment for a given position is selected using the criteria that its melting curve has at least two steps, the base pair position is in the fragment's lowest melting domain, and the melting domain has the smallest number of base pairs among fragments that meet the first two criteria. The program predicted fragments for detecting mutations in the cDNA and genomic DNA of the human p53 gene.  相似文献   

4.
A denaturing gradient gel electrophoresis (DGGE) method is described that detects even single base pair changes in mitochondrial DNA (mtDNA). In this method, restriction fragments of mtDNA are electrophoresed in a urea/formamide gradient gel at 60 degrees C. Migration distance of each mtDNA fragment in the gel depends on melting behavior which reflects base composition. Fragments are located by Southern blotting with specific mtDNA probes. With just four carefully chosen restriction enzymes and as little as 50-100 ng of mtDNA, the method covers almost the entire human mitochondrial genome. To demonstrate the method, human mtDNA was analyzed. In six normal individuals, DGGE revealed melting behavior polymorphisms (MBPs) in mtDNA fragments that were not detected by restriction fragment length polymorphism (RFLP) analysis in agarose gels. Another individual, shown to have a melting behavior polymorphism in the cytochrome b coding region, was studied in detail. By mapping, the mutation was deduced to lie between nt 14905 and 15370. The affected fragment was amplified by PCR and sequenced. Specific base changes were identified in the region predicted by the gel result. This method will be especially useful as a diagnostic tool in mitochondrial disease for rapid localization of mtDNA mutations to specific regions of the genome, but DGGE also could complement RFLP analysis as a more sensitive method to follow maternal lineage in human and animal populations in a variety of research fields.  相似文献   

5.
We present a simple, efficient extension of denaturing gradient gel electrophoresis that allows the detection of nearly any sequence change in a defined fragment of DNA. The fragment can be obtained either by means of the polymerase chain reaction or by restriction digestion of genomic DNA. With restriction fragments of genomic DNA, sequence information is not required, and covalent modifications in genomic DNA that are lost in a PCR, such as methylation, are detectable. We describe how a GC clamp (an arbitrary, G+C-rich sequence of 30 to 60 bp) can be attached to a selected restriction fragment present in a digest of genomic DNA. The GC clamp alters the melting properties of the fragment; this change greatly increases the fraction of possible mutations that is detectable. In a 272-bp HaeIII fragment from the human beta-globin gene, we were able to detect 13 of 13 mutations tested in human genomic DNA. Four additional mutations in cloned plasmids were analyzed. The data agree with a simple theoretical model for DGGE, which predicts how two fragments, differing at a single (specified) base pair, are resolved in a gradient gel as a function of running time for the gel. The calculation assists in the design of probes and gel conditions that aid in the detection of sequence changes.  相似文献   

6.
It has been shown that minor differences, such as single-base-pair substitutions between otherwise identical DNA fragments can result in altered melting behavior detectable by denaturing gradient gel electrophoresis (DGGE). Sequence variations in only a small DNA region within one locus can be detected using the previously described procedures. We have developed a method for the efficient Southern transfer of genomic DNA fragments from the denaturing gradient gels in order to be able to analyze larger regions in several loci for variation. The gels were made using polyacrylamide containing 2% low-geling-temperature agarose (LGT). The polyacrylamide gel (PAG) was crosslinked with a reversible crosslinker, and after electrophoresis the crosslinks were cleaved, the structure of the gel being maintained by the agarose. After this treatment of the denaturing gels, more than 90% of the DNA fragments could be transferred to nylon membranes by alkaline transfer, while electroblotting transferred only 10% of the DNA. Hybridization with gene-specific probes was then performed. We have used this technique to identify an RFLP in the COL1A2 gene in a human genomic DNA sample. The transfer technique described should make the use of DGGE more widely applicable since the genomic DNA fragments separated on one gel can be screened with several different probes, both cDNA and genomic probes.  相似文献   

7.
Denaturing gradient gel electrophoresis can detect sequence differences outside restriction-enzyme recognition sites. DNA sequence polymorphisms can be detected as restriction-fragment melting polymorphisms (RFMPs) in genomic DNA by using blots made from denaturing gradient gels. In contrast to the use of Southern blots to find sequence differences, denaturing gradient gel blots can detect differences almost anywhere, not just at 4-6-bp restriction-enzyme recognition sites. Human genomic DNA was digested with one of several randomly selected 4-bp recognition-site restriction enzymes, electrophoresed in denaturing gradient gels, and transferred to nylon membranes. The blots were hybridized with radioactive probes prepared from the factor VIII, type II collagen, insulin receptor, beta 2-adrenergic receptor, and 21-hydroxylase genes; in unrelated individuals, several RFMPs were found in fragments from every locus tested. No restriction map or sequence information was used to detect RFMPs. RFMPs can be used as genetic markers, because their alleles segregate in a Mendelian manner. Unlike most other methods for detecting DNA sequence polymorphisms, a genomic DNA blot made from one gel can be hybridized consecutively with many (30 or more) different probes.  相似文献   

8.
Laprise SL  Gray MR 《Gene》2007,391(1-2):45-52
Several approaches are used to survey genomic DNA methylation patterns, including Southern blot, PCR, and microarray strategies. All of these methods are based on the use of methylation-sensitive isoschizomer restriction enzyme pairs and/or sodium bisulfite treatment of genomic DNA. They have many limitations, including PCR bias, lack of comprehensive assessment of methylated sites, labor-intensive protocols, and/or the need for expensive equipment. Since the presence of 5-methylcytosine alters the melting properties of DNA molecules, denaturing gradient gel blots (DGG blots), a gene scanning technique which detects differences in DNA fragments based on differential melting behavior, were used to examine genomic modification patterns in normal tissues. Variations in melting behavior, observed as restriction fragment melting polymorphisms (RFMPs), were detected in various tissues from single individuals in all human and mouse genes tested, suggesting the presence of widespread differential cell type-specific DNA modification. Additional DGG blot experiments comparing genomic DNA to unmethylated cloned DNA suggested that the melting variants were most likely caused by DNA methylation differences. The results suggest that the use of DGG blots can provide a comprehensive and rapid method for comparing complex in vivo DNA modification patterns in normal adult somatic cells.  相似文献   

9.
The effect of nucleotide substitution on DNA denaturation profiles.   总被引:1,自引:1,他引:0       下载免费PDF全文
The melting profiles were obtained for DNA restriction fragments of approx. 1150 bp with deletion of one, five or six base pairs making them different from each other. In all cases the deletions caused a shift of one melting peak without affecting the positions of the other three peaks. The effect amounted to 0.28 +/- 0.03C upon the deletion of one GC pair. The melting of DNA fragments was also studied by electrophoresis in denaturing gradient gels. The deletion of one GC pair was shown to cause an appreciable shift of the electrophoretic denaturation profile.  相似文献   

10.
The anomalous electrophoretic behavior of a 686 base pair restriction fragment containing an in vitro-generated inversion mutation within the enhancer region of a chicken U1 RNA gene was investigated. This DNA fragment migrated with an abnormally slow mobility in polyacrylamide gels but migrated normally in agarose gels relative to the wild type fragment of identical size and base composition. In polyacrylamide gels, the degree of retardation was enhanced at low temperature, a phenomenon associated with bent DNA. A putative site of bending was localized at or near one end of the inverted region. These data suggest that the altered DNA conformation results from the juxtaposition of two normally remote DNA sequences.  相似文献   

11.
12.
A vertical gel electrophoresis apparatus is described which can distinguish DNA fragments differing by single base pair substitutions. The system employs a homogenous polyacrylamide gel containing urea-formamide and a temperature gradient which runs either perpendicular or parallel to the direction of electrophoresis. The temperature-gradient system simplifies several features of the denaturant-gradient system (1) and is relatively inexpensive to construct. Eight homologous 373 bp DNAs differing by one, two, or nine base pair substitutions were examined. DNA electrophoretic mobility changed abruptly with the temperature induced unwinding of DNA domains. GC to AT substitutions at different locations within the first melting domain, as well as an AT to TA transversion were separated with temperature gradients parallel to the electrophoretic direction. The relative stabilities of the DNAs observed in the gels were compared to predictions of DNA melting theory. General agreement was observed however complete correspondence was not obtained.  相似文献   

13.
Denaturing gradient gel electrophoresis (DGGE) is based upon the different melting behaviors of DNA molecules in a chemical denaturant gradient according to their sequences. This technique has recently become a widespread tool to detect mutations. The introduction of a GC-clamp enables the detection of most single base differences between two DNA molecules. As a test system we have applied the polymerase chain reaction (PCR) in combination with DGGE to detect a number of mutations in the mouse H2Kb DNA sequence. A wide variety of spontaneous in vivo mutations of this haplotype have been reported in the C57BL/6J mouse strain and are clustered in the alpha 1 and alpha 2 domains. The combination of PCR and DGGE revealed almost all base changes present in the H2Kb mutants used. However, most of the PCR products of these mutants showed melting behavior which is not easily predicted. We suggest that in addition to current simple theory, which considers that the migration of a DNA molecule in a denaturing gradient depends primarily on its initial melting behavior, additional factors such as secondary structure in partially melted molecules may play a role and can be used to detect mutations.  相似文献   

14.
We have used DNA footprinting and fluorescence melting experiments to study the sequence-specific binding of a novel minor groove binding ligand (thiazotropsin A), containing an isopropyl substituted thiazole polyamide, to DNA. In one fragment, which contains every tetranucleotide sequence, sub-micromolar concentrations of the ligand generate a single footprint at the sequence ACTAGT. This sequence preference is confirmed in melting experiments with fluorescently labelled oligonucleotides. Experiments with DNA fragments that contain variants of this sequence suggest that the ligand also binds, with slightly lower affinity, to sequences of the type XCYRGZ, where X is any base except C, and Z is any base except G.  相似文献   

15.
Summary The action of micrococcal nuclease, DNase I and DNase II on mouse TLT hepatoma chromatin revealing the periodicity of its structure as visualized by denaturing and nondenaturing gel electrophoresis, was consistent with the action of these enzymes on other chromatins. Micrococcal nuclease showed a complex subnucleosome fragment pattern based on multiples of 10 base pairs with a prominant couplet at 140/160 base pairs and the absence of the 80 base pair fragment. This couplet of the core and minimal nucleosome fragments was conspicuously present in the mononucleosomes found in the 11S fractions of a glycerol gradient centrifugation. DNase I and II produced a fairly even distribution of a 10 base pair increasing series of fragments to about 180 base pairs, a pattern also repeated in the DNA of nucleosome glycerol-gradient fractions. In limited digestions by these nucleases multinucleosomic DNA fragments are pronounced. These fragment lengths are multiples of an estimated average repeat length of nucleosome DNA of 180 base pairs. The action of the endogenous Mg/Ca-stimulated endonuclease produced only limited cuts in the hepatoma chromatin resulting primarily in multi-nucleosommc DNA fragment lengths and only upon lengthy digestion limited subnucleosomic, 10-base-pair multiple fragments are produced. The putative euchromatin-enriched fractions (50–75S) of the glycerol gradient centrifugation of autodigested chromatin, similarly, contained primarily the multinucleosomic DNA fragment lengths. These results are consistent with our previous electron microscopic demonstration that autodigested chromatin as well as the putative euchromatin-enriched fractions were composed of multinucleosomic chromatin segments containing a full complement of histones.  相似文献   

16.
We describe a novel PCR-based method that allows the generation of nested termination fragments by integrating both selective DNA amplification and directed chain termination into a single PCR reaction. These termination fragments can be examined for sequence variation in either denaturing or non-denaturing polyacrylamide gels. This method provides a one-step and highly effective approach for the detection of both insertions/deletions and single base pair substitutions in sequences up to 1 kb in length.  相似文献   

17.
Repeating restriction fragments of human DNA.   总被引:1,自引:0,他引:1  
Human DNA digested with Hae III showed multiple repeats of a 170 base pair fragment. The most prominent band was the 340 base pair dimer, estimated to be 0.8% of the entire genome. Eco R1 and Hha I yielded fragments with similar electrophoretic mobility to the Hae III dimer. In each case this band was markedly enriched in DNA reassociating at a 0t of less than or equal to 1. Hybridization of the Hae III dimer to gels eluted on to filters demonstrated that the multiple Hae III fragments and Eco R1 fragments contained compatible sequences. These sequences may comprise a distinct subclass of DNA.  相似文献   

18.
In two-dimensional denaturing gradient gel electrophoresis, DNA is digested with a restriction endonuclease and the resulting DNA fragments are separated as a function of size by conventional agarose gel electrophoresis. Following this first dimension electrophoresis, the fragment distribution is placed at the top of a denaturing gradient slab gel and electrophoresis is carried out parallel to the gradient direction. This second dimension separation is a complex function of the base sequence of each fragment. Analysis of the DNA fragment distribution as a function of fragment size allows the DNA size to be calculated. This method has been applied to calculate three microbial genome sizes: Mycoplasma capricolum, 724 kb; Acholeplasma laidlawii, 1646 kb; and Hemophilus influenzae, 1833 kb.  相似文献   

19.
Electrophoresis on slab gels containing a linear gradient of polyacrylamide concentration has been used to separate DNA fragments obtained by restriction of viral DNAs. A simple method of preparing gradient gels using a sucrose density-gradient mixer and preexisting slab gel apparatus is described. DNA fragments of molecular weights 7 × 104–14 × 106 have been fractionated on gels of 3.5–7.5% and 2.5–7.5% acrylamide concentration. In addition to the wide range of fragment sizes which may be run on a single gel, a further advantage of the system is that much sharper bands are obtained compared to conventional constant concentration gels, thus improving resolution.In the molecular-weight range below 5 × 106, for bands whose terminal velocities in the polyacrylamide concentration gradient approach zero, an approximately linear relationship holds between the logarithms of the molecular weights of the fragments and the logarithms of the distances they have migrated in the gel. Thus, by choosing a suitable upper limit to the concentration gradient, the gel system provides a method for estimating approximate molecular weights of unknown DNA fragments, by comparing their mobilities to known standards.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号