首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The relationship between intrinsic radiosensitivity and repair capacity was studied for 22 human tumor cell lines in vitro. The experimental material was taken from 19 published papers. Parameters from three radiobiological models were used to assess this relationship: the one-hit multitarget model (D0 and n), the linear-quadratic model (alpha and beta), and the mean inactivation dose (D). Data were obtained for cells in three stages: exponentially growing cells (exp), plateau-phase cells plated immediately after irradiation (ip), and plateau-phase cells plated after completion of PLD repair (dp). No significant difference was found between radiosensitivity of exp and ip cells. There was no correlation between repair capacity and intrinsic radiosensitivity assessed with plateau-phase cells plated immediately after irradiation. The correlation studies between intrinsic radiosensitivity or repair capacity and clinical responsiveness were achieved by assigning cell lines to one of three groups of decreasing in vivo radioresponsiveness: highly, medium, and poorly responsive. There was a significant correlation between radiosensitivity and radioresponsiveness, but no correlation between repair capacity and radioresponsiveness. The average repair capacity was about 0.6 Gy, in terms of D. Three parameters, the mean inactivation dose of exponentially growing cells, of plateau-phase cells plated immediately after irradiation, and of plateau-phase cells plated after completion of PLD repair, could be used equally to assess the relationship between in vitro data and radioresponsiveness. The present results are compared to those obtained in a similar study on a group of 48 nontransformed fibroblast cell strains.  相似文献   

2.
Liu ZJ  Lu X  Zhang Y  Zhong S  Gu SZ  Zhang XB  Yang X  Xin HM 《FEBS letters》2005,579(7):1587-1590
The p53 protein is one of the best-known tumour suppressors. Recently discovered ASPP1 and ASPP2 are specific activators of p53. To understand, if apoptosis-stimulating protein of p53 (ASPP) inactivation offers a selective advantage to tumors that have wild-type p53, we measured the mRNA expression of ASPP1 and ASPP2 in tumor cell lines retaining wide-type p53. In addition, the CpG island methylation status of ASPP1 gene and ASPP2 gene in the 5'-untranslated region was also investigated in order to understand the possible cause of abnormal expression of ASPP1 and ASPP2 in the tumor cell lines retaining wide-type p53. The data showed that mRNA expression of ASPP1 and ASPP2 is downregulated and CpG island tested is hypermethylated. These results indicated that ASPP CpG island aberrant methylation could be one molecular and genetic alteration in wild-type p53 tumours.  相似文献   

3.
The influence of p53 status on potentially lethal damage repair (PLDR) and DNA double-strand break (DSB) repair was studied in two isogenic human colorectal carcinoma cell lines: RKO (p53 wild-type) and RC10.1 (p53 null). They were treated with different doses of ionizing radiation, and survival and the induction of DNA-DSB were studied. PLDR was determined by using clonogenic assays and then comparing the survival of cells plated immediately with the survival of cells plated 24 h after irradiation. Doses varied from 0 to 8 Gy. Survival curves were analyzed using the linear-quadratic formula: S(D)/S(0) = exp-(αD+βD2). The γ-H2AX foci assay was used to study DNA DSB kinetics. Cells were irradiated with single doses of 0, 0.5, 1 and 2 Gy. Foci levels were studied in non-irradiated control cells and 30 min and 24 h after irradiation. Irradiation was performed with gamma rays from a 137Cs source, with a dose rate of 0.5 Gy/min. The RKO cells show higher survival rates after delayed plating than after immediate plating, while no such difference was found for the RC10.1 cells. Functional p53 seems to be a relevant characteristic regarding PLDR for cell survival. Decay of γ-H2AX foci after exposure to ionizing radiation is associated with DSB repair. More residual foci are observed in RC10.1 than in RKO, indicating that decay of γ-H2AX foci correlates with p53 functionality and PLDR in RKO cells.  相似文献   

4.
5.
Inherent radiosensitivity varies widely between individuals. We hypothesized that amino acid substitution variants in two highly radiation-responsive proteins, TP53 (p53) and CDKN1A (p21, Waf1, Cip1), are associated with and could explain individual variations in radiosensitivity. The two non-synonymous single-nucleotide polymorphisms (SNPs) TP53 codon 72 Arg/Pro G>C and CDKN1A codon 31 Ser/Arg C>A were genotyped in 92 normal fibroblast cell strains of different radiosensitivity. The clonogenic surviving fraction at 2 Gy (SF2) ranged between 0.15 and 0.50 (mean = 0.34, SD = 0.08). The mean SF2 was used to divide the cell strains into radiosensitive (45) and normal groups (47). A significant association was observed between SF2 and the TP53 codon 72 haplotype (C compared to G, P = 0.01). No association was observed between CDKN1A codon 31 haplotype and radiosensitivity (P = 0.86). The variant TP53 Arg72 allele was associated with a decrease in radiosensitivity, presumably due to suboptimal function leading to less stringent control of cell division. We conclude that certain SNPs in susceptible genes can influence cellular radiation response. Such risk alleles could ultimately be used as predictive markers for radiosensitivity to help stratifying individuals during assessment of risk of radiation exposure.  相似文献   

6.
PURPOSE: The present study aimed at investigating if 2'-2' difluorodeoxycytidine (dFdC) radioenhancement was mediated by an effect on induction and/or repair of radiation-induced DNA DSBs and chromosome aberrations in cells with different intrinsic radiosensitivity. METHODS: Confluent human head and neck squamous cell carcinoma cell lines designated SCC61 and SQD9 were treated with 5 microM dFdC for 3 or 24 h prior to irradiation. DNA DSBs induction and repair were analyzed by PFGE. Radiation-induced chromosome aberrations were examined with a FISH technique. RESULTS: In both cell lines, dFdC did not modify radiation-induced DNA DSBs in a dose range between 0 and 40 Gy. After a single dose of 40 Gy, dFdC affected neither the kinetic of repair nor the residual amount of DNA DSBs up to 4 h after irradiation. Whereas dFdC did not increase the induction of chromosome aberrations, after a single dose of 5 Gy, the percentage of aberrant cells and the number of aberrations per aberrant cells were significantly higher in combination with dFdC. CONCLUSION: Our data suggest that under experimental conditions yielding substantial radioenhancement, dFdC decreases the repair of genomic lesions inducing secondary chromosome breaks but has no effect on DNA DSBs repair as measured by PFGE.  相似文献   

7.
8.
Although extensive data indicate that the tumor suppressor TP53 modifies the radiation responses of human and rodent cells, the exact relationship between TP53 and radiation responsiveness remains controversial. To elucidate the relevance of endogenous TP53 genomic status to radiosensitivity in a cell-type-independent manner, different cells of 10 human tumor cell lines with different tissues of origin were examined for TP53 status. The TP53 status was compared with radiation-related cell survival parameters (D(q), D(0), SF2) and with the mode of cell death. Different modes of cell death were examined by measuring radiation-induced micronucleation, apoptosis and abnormal cells. Alterations of the TP53 gene were detected in eight cell lines. No splicing mutation was found. Five cell lines showed codon 68 polymorphism. Codon 72 alterations were found in four cell lines. "Hot spot" alterations were detected in only two of 10 cell lines. Although the cells differed widely in survival parameters (D(q), D(0), SF2) and modes of cell death (micronucleation/apoptosis/abnormal cells) after irradiation, significant cell-type-independent correlations were obtained between the multiple cell death parameter micronucleation/apoptosis/abnormal cells and SF2 (P < 0.001) and D(q) (P = 0.003). Moreover, cells with a wild-type TP53 gene were more resistant to X rays than cells with a mutated TP53 gene or cells that were TP53-deficient. The alterations within exons 5-10 of the TP53 correlated with a enhanced radiosensitivity. For the first time, we demonstrated a correlation between endogenous genetic alterations within exons 5-10 of TP53 and radiation-related cell survival and cell death. This indicates a new molecular relevance of TP53 status to intrinsic cellular radiosensitivity.  相似文献   

9.
Mice exposed to a lethal dose of radiation were repopulated with heterozygous p53(+/-) (TRP53(+/-)) bone marrow cells and then exposed to doses of 1, 3 and 5 Gy 1 month later. This resulted in the transplanted bone marrow-specific diseases other than competitively induced nonhematopoietic neoplasms. Interestingly, the present study showed a high frequency of stem cell leukemia, i.e., leukemias characterized by a lack of differentiation due also to p53 deficiency, even after 5 Gy irradiation. The frequencies of stem cell leukemias (and those of total hematopoietic malignancies) were 16% (24%) at 1 Gy and 45% (75%) at 3 Gy. Furthermore, markedly high incidences of stem cell leukemias were observed at 5 Gy in p53(+/-) mice, i.e., 87% (100%) in the transplantation assay and 60% (83.3%) in the whole-body assay, whereas a conventional whole-body assay induced only 14% in wild-type mice. The high incidence of stem cell leukemias observed in this study using heterozygous p53-deficient mice agrees with results of a previous study of homozygous p53-deficient mice and is consistent with the high frequency of loss of heterozygosity in the p53 wild-type allele observed in leukemias. This suggests that the target cells for radiation-induced stem cell leukemias may be p53-deficient hematopoietic stem cells.  相似文献   

10.
The published survival curves of 110 human tumor cell lines and 147 nontransformed human fibroblast strains have been reanalyzed using three different statistical methods: the single hit multitarget model, the linear-quadratic model, and the mean inactivation dose. The 110 tumor cell lines were classified in two ways: (a) into three categories defined by clinical radiocurability criteria, and (b) into seven categories based on histopathology. The 147 fibroblast strains were divided into eight genetic groups. Differences in the radiosensitivities of both the tumor cell and fibroblast groups could be demonstrated only by parameters that describe the slopes of the initial part of the survival curves. The capacity of the survival level to identify significant differences between groups was dose dependent over the range 1 to 6 Gy. This relationship showed a bell-shaped curve with a maximum at 1.5 Gy for the tumor cell lines and 3 Gy for the fibroblasts. Values for intrinsic radiosensitivity for a number of groups of tumors have also been obtained by primary culture of tumor cells. These values are strictly comparable to those obtained by clonogenic methods. This confirms that intrinsic radiosensitivity is a determinant of the response of tumor cells to radiotherapy and suggests that tissue culture methods may be used as a predictive assay.  相似文献   

11.
12.
We assessed changes in cell lines of varying p53 status after various fractionation regimens to determine if p53 influences gene expression and if multifractionated (MF) irradiation can induce molecular pathway changes. LNCaP (p53 wild-type), PC3 (p53 null), and DU145 (p53 mutant) prostate carcinoma cells received 5 and 10 Gy as single-dose (SD) or MF (0.5 Gy × 10, 1 Gy × 10, and 2 Gy × 5) irradiation to simulate hypofractionated and conventionally fractionated prostate radiotherapies, respectively. mRNA analysis revealed 978 LNCaP genes differentially expressed (greater than two-fold change, P < .05) after irradiation. Most were altered with SD (69%) and downregulated (75%). Fewer PC3 (343) and DU145 (116) genes were induced, with most upregulated (87%, 89%) and altered with MF irradiation. Gene ontology revealed immune response and interferon genes most prominently expressed after irradiation in PC3 and DU145. Cell cycle regulatory (P = 9.23 × 10-73, 14.2% of altered genes, nearly universally downregulated) and DNA replication/repair (P = 6.86 × 10-30) genes were most prominent in LNCaP. Stress response and proliferation genes were altered in all cell lines. p53-activated genes were only induced in LNCaP. Differences in gene expression exist between cell lines and after varying irradiation regimens that are p53 dependent. As the duration of changes is ≥24 hours, it may be possible to use radiation-inducible targeted therapy to enhance the efficacy of molecular targeted agents.  相似文献   

13.
14.
Temozolomide (TMZ) is a methylating agent which prolongs survival when administered during and after radiotherapy in the first-line treatment of glioblastoma and which also has significant activity in recurrent disease. O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair enzyme attributed a role in cancer cell resistance to O6-alkylating agent-based chemotherapy. Using a panel of 12 human glioma cell lines, we here defined the sensitivity to TMZ in acute cytotoxicity and clonogenic survival assays in relation to MGMT, mismatch repair and p53 status and its modulation by dexamethasone, irradiation and BCL-X(L). We found that the levels of MGMT expression were a major predictor of TMZ sensitivity in human glioma cells. MGMT activity and clonogenic survival after TMZ exposure are highly correlated (p < 0.0001, r2 = 0.92). In contrast, clonogenic survival after TMZ exposure does not correlate with the expression levels of the mismatch repair proteins mutS homologue 2, mutS homologue 6 or post-meiotic segregation increased 2. The MGMT inhibitor O6-benzylguanine sensitizes MGMT-positive glioma cells to TMZ whereas MGMT gene transfer into MGMT-negative cells confers protection. The antiapoptotic BCL-X(L) protein attenuates TMZ cytotoxicity in MGMT-negative LNT-229 but not in MGMT-positive LN-18 cells. Neither ionizing radiation (4 Gy) nor clinically relevant concentrations of dexamethasone modulate MGMT activity or TMZ sensitivity. Abrogation of p53 wild-type function strongly attenuates TMZ cytotoxicity. Conversely, p53 mimetic agents designed to stabilize the wild-type conformation of p53 sensitize glioma cells for TMZ cytotoxicity. Collectively, these results suggest that the determination of MGMT expression and p53 status will help to identify glioma patients who will or will not respond to TMZ.  相似文献   

15.
Ionizing radiation (IR) induces DNA breakage to activate cell cycle checkpoints, DNA repair, premature senescence or cell death. A master regulator of cellular responses to IR is the ATM kinase, which phosphorylates a number of downstream effectors, including p53, to inhibit cell cycle progression or to induce apoptosis. ATM phosphorylates p53 directly at Ser15 (Ser18 of mouse p53) and indirectly through other kinases. In this study, we examined the role of ATM and p53 Ser18 phosphorylation in IR-induced retinal apoptosis of neonatal mice. Whole-body irradiation with 2 Gy IR induces apoptosis of postmitotic and proliferating cells in the neonatal retinas. This apoptotic response requires ATM, exhibits p53-haploid insufficiency and is defective in mice with the p53S18A allele. At a higher dose of 14 Gy, retinal apoptosis still requires ATM and p53 but can proceed without Ser18 phosphorylation. These results suggest that ATM activates the apoptotic function of p53 in vivo through alternative pathways depending on IR dose.  相似文献   

16.
The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxic stress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. We investigated the involvement of activation of ERK signalling as a consequence of non-functional p53, in sensitivity of cells to doxorubicin. We performed cell survival assays in cancer cell lines with varying p53 status: MCF-7 (wild-type p53, WTp53), MDA MB-468 (mutant p53, MUTp53), H1299 (absence of p53, NULLp53) and an isogenic cell line MCF-7As (WTp53 abrogated). Our results indicate that enhanced chemosensitivity of cells lacking wild-type p53 function is because of elevated levels of EGFR which activates ERK. Additionally, we noted that independent of p53 status, pERK contributes to doxorubicin-induced cell death.  相似文献   

17.
Recent studies have demonstrated that p21WAF1 (now known as CDKN1A)-dependent and -independent accelerated senescence responses are a major determinant of the sensitivity of cancer cells to chemotherapeutic agents. The objective of the present study was to determine whether human solid tumor-derived cell lines that express wild-type TP53 can exhibit levels of CDKN1A induction after exposure to ionizing radiation that are sufficient to activate the accelerated senescence program. Exposure to 60Co gamma radiation (< or =8 Gy) triggered accelerated senescence in all five TP53 wild-type tumor cell lines examined, albeit to differing degrees. Three of the TP53 wild-type tumor cell lines, HCT116, A172 and SKNSH, activated the TP53 signaling pathway similarly to normal human fibroblasts, as judged by the nuclear accumulation of TP53, magnitude and duration of induction of CDKN1A mRNA and CDKN1A protein, and propensity to undergo accelerated senescence after radiation exposure. In the clonogenic survival assay, the degree of radiosensitivity of these three tumor cell lines was also in the range displayed by normal human fibroblasts. On the other hand, two other TP53 wild-type tumor cell lines, A498 and A375, did not maintain high levels of CDKN1A mRNA and CDKN1A protein at late times postirradiation and exhibited only low levels of accelerated senescence after radiation exposure. Studies with a CDKN1A knockout cell line (HCT116CDKN1A-/-) confirmed that the radiation-triggered accelerated senescence is dependent on CDKN1A function. We conclude that (1) clinically achievable doses of ionizing radiation can trigger CDKN1A-dependent accelerated senescence in some human tumor cell lines that express wild-type TP53; and (2) as previously documented for normal human fibroblasts, some TP53 wild-type tumor cell lines (e.g. HCT116, A172 and SKNSH) may lose their clonogenic potential in response to radiation-inflicted injury primarily through undergoing accelerated senescence.  相似文献   

18.
The aim of this work was to compare the effect of gamma radiation with sub-low dose-rate 1.8 mGy/min (SLDR), low dose-rate 3.9 mGy/min (LDR) and high dose-rate 0.6 Gy/min (HDR) on human leukemic cell lines with differing p53 status (HL-60, p53 deficient and MOLT-4, p53 wild) and to elucidate the importance of G2/M phase cell cycle arrest during irradiation. Radiosensitivity of HL-60 and MOLT-4 cells was determined by test of clonogenity. Decrease of dose-rate had no effect on radiosensitivity of MOLT-4 cells (D(0) for HDR 0.87 Gy, for LDR 0.78 Gy and for SLDR 0.70 Gy). In contrast, a significant increase of radioresistance after LDR irradiation was observed for p53 negative HL-60 cells (D(0) for HDR 2.20 Gy and for LDR 3.74 Gy). After an additional decrease of dose-rate (SLDR) D(0) value (2.92 Gy) was not significantly different from HDR irradiation. Considering the fact that during HDR the cells are irradiated in all phases of the cell cycle and during LDR mainly in the G2 phase, we have been unable to prove that the G2 phase is the most radiosensitive phase of the cell cycle of HL-60 cells. On the contrary, irradiation of cells in this phase induced damage reparation and increased radioresistance. When the dose-rate was lowered, approximately to 1.8 mGy/min, an opposite effect was detected, i.e. D(0) value decreased to 2.9 Gy. We have proved that during SLDR at first (dose up to 2.5 Gy) the cells accumulated in G2 phase, but then they entered mitosis or, if the cell damage was not sufficiently repaired, the cells entered apoptosis. The entry into mitosis has a radiosensibilizing effect.  相似文献   

19.
Melanoma is the most aggressive of skin cancers because of its high resistance to currently available therapy. Although melanoma cells often retain wild-type p53 tumour suppressor protein and express it at high levels, the p53 mediated apoptosis pathway is suppressed. Histone deacetylase (HDAC) inhibitors are a promising group of compounds inducing differentiation, growth arrest and apoptosis in tumour cells in preclinical studies. We have studied the cellular effects of trichostatin A (TSA), a HDAC inhibitor, in a panel of melanoma cell lines and its mechanism of action in relation to p53. TSA stabilized wild-type p53, but p53 protein accumulation was overridden by simultaneous downregulation of p53 mRNA leading to a decrease in p53 protein. While growth arrest was induced in all cell lines studied and apoptosis in most (6/7), these cellular effects were independent of the p53 status of the cells. Inhibiting p53 function by a dominant negative p53 (p53(175His)) confirmed that the HDAC inhibitor induced apoptosis was independent of wild-type p53, even though TSA slightly activated p53 in a reporter assay. The results indicate that while the action of TSA is independent of p53, the activation of the apoptosis pathway by the HDAC inhibitors may provide therapeutic approaches for melanoma treatment.  相似文献   

20.
One of the earliest cellular responses to radiation-induced DNA damage is the phosphorylation of the histone variant H2AX (gamma-H2AX). gamma-H2AX facilitates the local concentration and focus formation of numerous repair-related proteins within the vicinity of DNA DSBs. Previously, we have shown that low-dose hyper-radiosensitivity (HRS), the excessive sensitivity of mammalian cells to very low doses of ionizing radiation, is a response specific to G(2)-phase cells and is attributed to evasion of an ATM-dependent G(2)-phase cell cycle checkpoint. To further define the mechanism of low-dose hyper-radiosensitivity, we investigated the relationship between the recognition of radiation-induced DNA double-strand breaks as defined by gamma-H2AX staining and the incidence of HRS in three pairs of isogenic cell lines with known differences in radiosensitivity and DNA repair functionality (disparate RAS, ATM or DNA-PKcs status). Marked differences between the six cell lines in cell survival were observed after high-dose exposures (>1 Gy) reflective of the DNA repair capabilities of the individual six cell lines. In contrast, the absence of functional ATM or DNA-PK activity did not affect cell survival outcome below 0.2 Gy, supporting the concept that HRS is a measure of radiation sensitivity in the absence of fully functional repair. No relationship was evident between the initial numbers of DNA DSBs scored immediately after either low- or high-dose radiation exposure with cell survival for any of the cell lines, indicating that the prevalence of HRS is not related to recognition of DNA DSBs. However, residual DNA DSB damage as indicated by the persistence of gamma-H2AX foci 4 h after exposure was significantly correlated with cell survival after exposure to 2 Gy. This observation suggests that the persistence of gamma-H2AX foci could be adopted as a surrogate assay of cellular radiosensitivity to predict clinical radiation responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号