首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal and conformational stability of seed coat soybean peroxidase   总被引:3,自引:0,他引:3  
Kamal JK  Behere DV 《Biochemistry》2002,41(29):9034-9042
Soybean peroxidase (SBP) obtained from the soybean seed coats belongs to class III of the plant peroxidase superfamily. Detailed circular dichroism and steady state fluorescence studies have been carried out to monitor thermal as well as denaturant-induced unfolding of SBP and apo-SBP. Melting of secondary and tertiary structures of SBP occurs with characteristic transition midpoints, T(m), of 86 and 83.5 degrees C, respectively, at neutral pH. Removal of heme resulted in greatly decreased thermal stability of the protein (T(m) = 38 degrees C). The deltaG degrees (H2O) determined from guanidine hydrochloride-induced denaturation at 25 degrees C and at neutral pH is 43.3 kJ mol(-1) for SBP and 9.0 kJ mol(-1) for apo-SBP. Comparison with the reported unfolding data of the homologous enzyme, horseradish peroxidase (HRP-C), showed that SBP exhibits significantly high thermal and conformational stability. We show that this enhanced structural stability of SBP relative to HRP-C arises due to the unique nature of their heme binding. A stronger heme-apoprotein affinity probably due to the interaction between Met37 and the C8 heme vinyl substituent contributes to the unusually high structural stability of SBP.  相似文献   

2.
The nature of the heme environment in methemalbumin, the Fe(III) protoporphyrin IX (heme)-human serum albumin (HSA) complex, was investigated by optical spectroscopy. Comparison of the optical spectra of methemalbumin, ferro-hemalbumin in the absence and presence of 2-methylimidazole, and their carbon monoxide derivatives with horseradish peroxidase (HRP) and its corresponding derivatives indicates that histidine is not present in the first coordination sphere of heme in methemalbumin and that the protein is devoid of a well-defined heme cavity. The complex exhibits peroxidase activity by catalyzing oxidation of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) by hydrogen peroxide. Its activity ( K(M)=433 microM, molar catalytic activity=0.33 s(-1)), however, is considerably lower compared to HRP, indicating differences in the heme environments. Fluorescence intensity decays of Trp214 in HSA and methemalbumin, best fitted to a three-exponential model, gave the lifetimes 7.03 ns (30%), 3.17 ns (38%), and 0.68 ns (32%) for HSA and 8.04 ns (1.7%), 2.42 ns (19.7%), and 0.64 ns (78.6%) for methemalbumin. These lifetime values were further confirmed by a model-independent maximum entropy method. Similarity in the lifetimes and variations in the amplitudes suggest that while conformational heterogeneity of HSA is unperturbed on heme binding, redistribution of the populations of the three conformations occurs and the sub-state associated with the shortest lifetime dominates the total population by approximately 80%. Decay associated spectra (DAS) indicate that the observed lifetime variation with wavelength is predominantly due to ground state heterogeneity, though solvent dipolar relaxation also contributes. Time-resolved fluorescence anisotropy measurements of the Trp214 residue yielded information on motion within the protein together with the whole protein molecule. The binding of heme did not affect the rotational correlation time of the albumin molecule (approximately 20 ns). However, the motion of tryptophan within the protein matrix increased by a factor of approximately 3 (0.46 ns to 0.15 ns). This indicates that while the overall hydrodynamic volume of the albumin molecule remained the same, tryptophan underwent a more rapid internal rotation because of the efficient energy transfer to the bound heme. Optical studies, analysis of lifetime measurements, DAS, and anisotropy measurements together suggest that heme binds to a surface residue. The rapid internal motion of Trp214 during its excited state lifetime for the approximately 80% populated conformer of methemalbumin allows the orientation factor, kappa(2), to approach the average value of 2/3. From the time-resolved fluorescence measurements and the energy transfer calculations on methemalbumin, a Trp214-heme distance of 22 A was deduced.  相似文献   

3.
Seed coat soybean peroxidase (SBP) belongs to class III of the plant peroxidase superfamily that includes the classical peroxidase, namely horseradish peroxidase (HRP). We have measured the catalytic activity (k(cat)) and catalytic efficiency (k(cat)/K(M)) of SBP and that of HRP-C for the oxidation of ABTS [2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonate)] by hydrogen peroxide at 25 degrees C. We observed that the k(cat) and k(cat)/K(M) values for SBP are much higher than those for HRP-C at all pH values, rendering SBP a more potent peroxidase. This is attributed to the relatively more solvent exposed delta-meso heme edge in SBP. We observed that the maximum catalytic activity and conformational stability of SBP is at pH approximately 5.5. A pH maximum of 5.0 for the catalytic activity of SBP has recently been reported. Estimation of secondary structural elements at various pH values indicated that there is a maximal reduction of beta-strands and beta-turns at pH 5.5 causing the heme to be further exposed to the solvent and increasing the overall conformational flexibility of the protein.  相似文献   

4.
C K Wang  R S Mani  C M Kay  H C Cheung 《Biochemistry》1992,31(17):4289-4295
We have used time-resolved laser fluorescence spectroscopy to investigate the intensity and anisotropy decays of the single tryptophan residue in bovine brain S-100a (alpha beta) protein. The steady-state and acrylamide quenching results indicated that the Trp 90 of the alpha-subunit was partially buried in a relatively nonpolar environment at pH 7.5. Both Ca2+ and pH 8.5 slightly enhanced the exposure of the residue to the solvent, but the residue remained partially buried in the calcium complex at both pH values. The best representation of the intensity decays was a linear combination of three exponential terms, regardless of solvent condition and temperature. The three lifetimes (tau i) were in the range of 0.4-5 ns and insensitive to emission wavelength, but their fractional amplitudes (alpha i) shifted in favor of the shortest component (alpha 1) when the decays were measured at the blue end of the emission spectrum. These results suggest that an excited-state interaction between the indole ring and the side chain of an adjacent residue may be responsible for the observed shortest lifetime. In the presence of Ca2+, the three lifetimes remained relatively unaltered, but the values of alpha 1 decreased by a factor of 2.3 at pH 7.2 and a factor of 1.8 at pH 8.2. This Ca(2+)-induced decrease may be attributed to disruption of the putative excited-state interaction resulting from reorientations of the alpha-helical segments flanking a Ca(2+)-binding loop (residues 62-73). At both pH 7.2 and 8.4, the anisotropy decays of the apoprotein followed a biexponential decay law.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have inserted a tryptophan (F77W) in the core of the regulatory domain of cardiac troponin C (cNTnC), and previously determined the structure of this mutant with and without the cosolvent trifluoroethanol (TFE). Interestingly, the orientations of the indole side chain of the Trp are in opposite directions in the two structures (Julien et al., Protein Sci 2009; 18:1165-1174). Fluorescence decay experiments for single Trp-containing proteins often show several lifetimes, which have been interpreted as reflecting conformational heterogeneity of the Trp side chain resulting from different rotamers. To test this interpretation, we monitored the effect of TFE on wild type, F77W and F77W-V82A calcium-saturated cNTnC using 2D (13)C-HSQC NMR and time-correlated single photon counting fluorescence spectroscopies. The time dependence of the Trp fluorescence decay was fit with three lifetimes. Addition of TFE caused a gradual, but limited decrease of the lifetimes due to dynamic quenching. For F77W cNTnC, the amplitude fractions of the lifetimes also changed upon addition of TFE-the long lifetime increased from 13 to 29%, while the middle lifetime decreased from 63 to 50% and the short lifetime remained relatively unchanged. For F77W-V82A cNTnC, comparable NMR changes are observed, confirming the switch in rotamer conformation, but only much smaller changes in fluorescence decay parameters were detected. These data indicate that the balance between the rotamer states can be changed without changing the lifetime amplitude fractions appreciably, and suggest that the environment(s) of the indole ring, responsible for the different lifetimes, can result from factors other than the intrinsic rotamer state of the tryptophan.  相似文献   

6.
Tryptophan fluorescence lifetimes at pH 2 and pH 8 have been obtained for lysozyme and for lysozyme derivatives in which tryptophan-62 or tryptophan-108 or both are nonfluorescent. The lifetimes range from about 0.5 ns to 2.8 ns for the various emitting tryptophans. The tryptophan lifetimes appear to increase with exposure of tryptophan to solvent, but intramolecular contacts, probably with cystine residues, can considerably shorten the lifetime. Intertryptophanyl interactions can also affect fluorescence lifetimes. The trytophan-108 lifetime in lysozyme is shorter than in the derivative in which tryptophan-62 is oxidized; this is ascribed to energy transfer from tryptophan-108 to tryptophan-62. From the lifetime results the relative intensities emitted by specific tryptophans can be estimated, and these values also support the existence of intertryptophanyl energy transfer. The emission intensity from tryptophan-62 is greater in the presence of tryptophan-108, and the emission intensity of tryptophan-108 appears to be greater in the absence of tryptophan-62. Conformational effects accompanying chemical modification of tryptophan cannot be completely ruled out, however. The tryptophan-62 lifetime at pH 8 in lysozyme is shorter than in the derivatives, which might indicate a subtle conformational effect. Studies with tri-(N-acetyl-glucosamine)-protein complexes indicate that both the tryptophan lifetimes and the number of emitting tryptophans may be changing upon complexation. The results illustrate the usefulness and the limitations of lifetime measurements in understanding protein fluorescence.  相似文献   

7.
Conformational change in rat liver phenylalanine hydroxylase associated with activation by phenylalanine or N-(1-anilinonaphth-4-yl)maleimide was investigated by measuring fluorescence spectra and fluorescence lifetimes of tryptophanyl residues as well as the probe fluorophore conjugated with SH groups of the hydroxylase. The fluorescence spectrum of tryptophan exhibited its maximum at 342 nm. It shifted by 8 nm toward longer wavelength accompanied by an increase in its intensity, by preincubation with 1 mM phenylalanine. The fluorescence intensity of tryptophan increased by 36% upon the activation. On the other hand, the binding of (6R)-L-erythro-tetrahydrobiopterin, a natural cofactor of the enzyme, induced a decrease in the fluorescence intensity by 79% without a shift of the maximum wavelength. The fluorescence lifetime of tryptophan of phenylalanine hydroxylase exhibited two components with lifetimes of 1.7 and 4.1 ns. The values of the lifetimes changed to 1.4 and 5.6 ns, respectively, upon the activation. It is considered that the change in the longer lifetime is correlated with the shift of the emission peak upon the activation. The values of both the lifetimes decreased to 0.64 and 3.6 ns upon the binding of (6R)-L-erythro-tetrahydrobiopterin, which is coincident with the decrease in the fluorescence intensity. Conjugation of N-(1-anilinonaphth-4-yl)maleimide with SH of phenylalanine hydroxylase brought about a decrease in both the fluorescence intensity and the value of the shorter lifetime of the tryptophanyl residues, while the longer lifetime remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A multifrequency phase fluorometric study is described for wild-type barnase and engineered mutant proteins in which tryptophan residues have been replaced by less fluorescent residues which do not interfere with the determination of the tryptophan emission spectra and lifetimes. The lifetimes of the three tryptophans in the wild-type protein have been resolved. Trp-35 has a single fluorescence lifetime, which varies in the different proteins between 4.3 and 4.8 ns and is pH-independent between pH 5.8 and 8.9. Trp-71 and Trp-94 behave as an energy-transfer couple with both forward and reverse energy transfer. The couple shows two fluorescence lifetimes: 2.42 (+/-0.2) and 0.74 (+/-0.1) ns at pH 8.9, and 0.89 (+/-0.05) and 0.65 (+/-0.05) ns at pH 5.8. In the mutant Trp-94----Phe the lifetime of Trp-71 is 4.73 (+/-0.008) ns at high pH and 4.70 (+/-0.004) ns at low pH. In the mutant Trp-71----Tyr, the lifetime of Trp-94 is 1.57 (+/-0.01) ns at high pH and 0.82 (+/-0.025) ns at low pH. From these lifetimes, one-way energy-transfer efficiencies can be calculated according to Porter [Porter, G.B. (1972) Theor. Chim. Acta 24, 265-270]. At pH 8.9, a 71% efficiency was found for forward transfer (from Trp-71 to Trp-94) and 36% for reverse transfer. At pH 5.8 the transfer efficiency was 86% for forward and 4% for reverse transfer (all +/-2%). These transfer efficiencies correspond fairly well with the ones calculated according to the theory of F?rster [F?rster, T. (1948) Ann. Phys. (Leipzig) 2, 55-75].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Multifrequency phase-modulation lifetime data were acquired for sarcoplasmic reticulum Ca2+-ATPase. The intrinsic tryptophan fluorescence decay was complex and was fitted either with three exponentials or with bimodal Lorentzian distributions of lifetimes. Ca2+ binding to the high affinity sites in the ATPase produced an increase of 11% in the center of the main component of the bimodal distribution, shifting the lifetime from 4.04 to 4.50 ns. The effects of solvent on the ATPase were studied with the enzyme dissolved in reverse micelles of detergent bis-(2-ethylhexyl)sulfosuccinate in hexane. Increasing amounts of water up to a water/bis-(2-ethylhexyl)sulfosuccinate molar ratio of 4 produced marked changes in the fluorescence emission of the protein. Comparison of data obtained for micellar solutions of tryptophan or ATPase indicated that the tryptophan residues in the protein are protected from exposure to water. Correlation of water effects on emission intensity and lifetimes suggested that interaction with solvent may result in structural changes that cause a mixture of dynamic and static quenching of ATPase intrinsic fluorescence. Evidence for an effect of hydration on the structure of the active site was obtained by measurements of the fluorescence properties of fluorescein isothiocianate-labeled ATPase in reverse micelles.  相似文献   

10.
The fluorescence lifetime and rotational correlation time of the tryptophan residue in melittin, as both a monomer and tetramer, have been measured between pH 6 and 11. The fluorescence decays are non-exponential and give lifetimes of 0.7±0.1 ns and 3.1±0.1 ns. This emission is consistent with a model in which the tryptophan residue is in slightly different environments in the protein. In a dilute solution of monomer the mean fluorescence lifetime is 2.3±0.1 ns, below pH 10, but falls to 1.7 ns at higher pH. In contrast, the melittin tetramer has a mean fluorescence lifetime of only 2.2 ns at pH 6, which falls to 1.9 ns by pH 8, and falls again above pH 10 to the same value as in monomeric melittin. The behaviour between pH 6 and 8 is explained as the quenching of the Trp residue by lysine groups, which are near to the Trp in the tetramer but in the monomer, are too distant to quench. Fluorescence anisotropy decays show that the Trp residue has considerable freedom of motion and the range of wobbling motion is 35±10° in the tetramer  相似文献   

11.
The single tryptophan at position 121 of human interleukin-2 (IL-2) can form an NH-pi hydrogen bond with Phe 117 involving the indole nitrogen and the benzene aromatic ring. At pH 5.5, this type of aromatic interaction results in a fluorescence quantum yield three-fold lower than that of a fully solvent exposed tryptophan. At pH 2.1, IL-2 forms a compact denatured state with twice the emission intensity of the native protein. Global analysis of time-resolved fluorescence emission at multiple emission wavelengths shows that native and acid-denatured IL-2 can be described by four decay components. The fractional amplitudes of the shortest sub-nanosecond lifetimes are higher in the native state, suggesting rapid quenching due to the NH-pi hydrogen bond. In the denatured state, longer lifetimes have greater fractional amplitudes, indicating a smaller population of hydrogen-bonded species. Electrostatic-dipolar relaxation of the tryptophan microenvironment upon excitation is greater in the native-state of IL-2 than the acid-denatured state. This suggests that acid-denaturation sequesters Trp 121 from polar residues, while maintaining an interaction with Phe 117. This is consistent with the model of secondary structure preservation and hydrophobic clustering in molten-globule intermediates.  相似文献   

12.
Time-resolved fluorescence of the single tryptophan residue Trp41 in fragment 1-86 of factor X (FX F1-86) is studied using a time-correlated single photon counting technique with synchrotron radiation as the excitation source. Calcium ions are believed to induce a conformational change in the N-termini of the activated factor X and other vitamin K dependent proteins, which is accompanied by a decrease in fluorescence intensity. The titration with calcium yields a sigmoidal fluorescence titration curve with a transition midpoint concentration of 0.44 mM. The wavelength-dependent tryptophan fluorescence decays of the apo-FX F1-86 (in the absence of calcium) and Ca-FX F1-86 are characterized by conventional multiexponential analysis and fluorescence lifetime distribution analysis. In the absence of calcium there are three significant classes of fluorescence lifetimes (ns) that are nearly wavelength independent: 0.55 +/- 0.08 (component A), 2.6 +/- 0.1 (component B), and 5.3 +/- 0.3 (component C). However, their preexponential amplitudes vary with wavelength. The decay associated emission spectra of the individual components show that components B and C contribute over 85% to the total fluorescence for all examined wavelengths. However, in the presence of calcium, the analysis of the time-resolved fluorescence data of Ca-FX F1-86 yields four wavelength-independent lifetimes (ns) of 0.30 +/- 0.09 (component D), 0.65 +/- 0.10 (component A), 2.7 +/- 0.2 (component B), and 5.4 +/- 0.3 (component C). Calcium addition to the apo-FX F1-86 leads to a decrease in the fluorescence intensities of components B and C while their decay times remain unaffected. In Ca-FX F1-86 an additional component D arises that has a decay time of 0.30 ns and that contributes up to 35% to the total fluorescence intensity. A comparison with a previous investigation of prothrombin fragment 1 demonstrates the extensive structural and functional homology between the N termini of prothrombin and factor X(a).  相似文献   

13.
The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.  相似文献   

14.
The glutathione S-transferase (GST) isoenzyme A1–1 from rat contains a single tryptophan, Trp 21, which is expected to lie within α-helix 1 based on comparison with the X-ray crystal structures of the pi- and mu-class enzymes. Steady-state and multifrequency phase/modulation fluorescence studies have been performed in order to characterize the fluorescence parameters of this tryptophan and to document ligand-induced conformational changes in this region of the protein. Addition of S-hexyl glutathione to GST isoenzyme A1–1 causes an increase in the steady-state fluorescence intensity, whereas addition of the substrate glutathione has no effect. Frequency-domain excited-state lifetime measurements indicate that Trp 21 exhibits three exponential decays in substrate-free GST. In the presence of S-hexyl glutathione, the data are also best described by the sum of three exponential decays, but the recovered lifetime values change. For the substrate-free protein, the short lifetime component contributes 9–16% of the total intensity at four wavelengths spanning the emission. The fractional intensity of this lifetime component is decreased to less than 3% in the presence of S-hexyl glutathione. Steady-state quenching experiments indicate that Trp 21 is insensitive to quenching by iodide, but it is readily quenched by acrylamide. Acrylamide-quenching experiments at several emission wavelengths indicate that the long-wavelength components become quenched more easily in the presence of S-hexyl glutathione. Differential fluorescence polarization measurements also have been performed, and the data describe the sum of two anisotropy decay rates. The recovered rotational correlation times for this model are 26 ns and 0.81 ns, which can be attributed to global motion of the protein dimer, and fast local motion of the tryptophan side chain. These results demonstrate that regions of GST that are not in direct contact with bound substrates are mobile and undergo microconformational rearrangement when the “H-site” is occupied.  相似文献   

15.
Chen J  Toptygin D  Brand L  King J 《Biochemistry》2008,47(40):10705-10721
Human gammaD-crystallin (HgammaD-Crys) is a two-domain, beta-sheet eye lens protein found in the lens nucleus. Its long-term solubility and stability are important to maintain lens transparency throughout life. HgammaD-Crys has four highly conserved buried tryptophans (Trps), with two in each of the homologous beta-sheet domains. In situ, these Trps will be absorbing ambient UV radiation that reaches the lens. The dispersal of the excited-state energy to avoid covalent damage is likely to be physiologically relevant for the lens crystallins. Trp fluorescence is efficiently quenched in native HgammaD-Crys. Previous steady-state fluorescence measurements provide strong evidence for energy transfer from Trp42 to Trp68 in the N-terminal domain and from Trp130 to Trp156 in the C-terminal domain [Chen, J., et al. (2006) Biochemistry 45, 11552-11563]. Hybrid quantum mechanical-molecular mechanical (QM-MM) simulations indicated that the fluorescence of Trp68 and Trp156 is quenched by fast electron transfer to the amide backbone. Here we report additional information obtained using time-resolved fluorescence spectroscopy. In the single-Trp-containing proteins (Trp42-only, Trp68-only, Trp130-only, and Trp156-only), the highly quenched Trp68 and Trp156 have very short lifetimes, tau approximately 0.1 ns, whereas the moderately fluorescent Trp42 and Trp130 have longer lifetimes, tau approximately 3 ns. In the presence of the energy acceptor (Trp68 or Trp156), the lifetime of the energy donor (Trp42 or Trp130) decreased from approximately 3 to approximately 1 ns. The intradomain energy transfer efficiency is 56% in the N-terminal domain and is 71% in the C-terminal domain. The experimental values of energy transfer efficiency are in good agreement with those calculated theoretically. The absence of a time-dependent red shift in the time-resolved emission spectra of Trp130 proves that its local environment is very rigid. Time-resolved fluorescence anisotropy measurements with the single-Trp-containing proteins, Trp42-only and Trp130-only, indicate that the protein rotates as a rigid body and no segmental motion is detected. A combination of energy transfer with electron transfer results in short excited-state lifetimes of all Trps, which, together with the high rigidity of the protein matrix around Trps, could protect HgammaD-Crys from excited-state reactions causing permanent covalent damage.  相似文献   

16.
Time-resolved and steady-state fluorescence have been used to resolve the heterogeneous emission of single-tryptophan-containing mutants of Trp repressors W19F and W99F into components. Using iodide as the quencher, the fluorescence-quenching-resolved spectra (FQRS) have been obtained The FQRS method shows that the fluorescence emission of Trp99 can be resolved into two component spectra characterized by maxima of fluorescence emission at 338 and 328 nm. The redder component is exposed to the solvent and participates in about 21% of the total fluorescence emission of TrpR W19F. The second component is inacessible to iodide, but is quenched by acrylamide. The tryptophan residue 19 present in TrpR W99F can be resolved into two component spectra using the FQRS method and iodide as a quencher. Both components of Trp19 exhibit similar maxima of emission at 322–324 nm and both are quenchable by iodide. The component more quenchable by iodide participates in about 38% of the total TrpR W99F emission. The fluorescence lifetime measurements as a function of iodide concentration support the existence of two classes of Trp99 and Trp19 in the Trp repressor. Our results suggest that the Trp aporepressor can exist in the ground state in two distinct conformational states which differ in the microenvironment of the Trp residues.Abbreviations TrpR tryptophan aporepressor fromE. coli - TrpR W19F TrpR mutant with phenylalanine substituted for tryptophan at position 19 - TrpR W99F TrpR mutant with phenylalanine substituted for tryptophan at position 99 - FQRS fluorescence-quenching-resolved spectra - FPLC fast protein liquid chromatography  相似文献   

17.
EcoRI endonuclease has two tryptophans at positions 104 and 246 on the protein surface. A single tryptophan mutant containing Trp246 and a single cysteine labeling site at the N-terminus was used to determine the position of the N-terminus in the protein structure. The N-termini of EcoRI endonuclease are essential for tight binding and catalysis yet are not resolved in any of the crystal structures. Resonance energy transfer was used to measure the distance from Trp246 donor to IAEDANS or MIANS acceptors at Cys3. The distance is 36 A in apoenzyme, decreasing to 26 A in the DNA complex. Molecular modeling suggests that the N-termini are located at the dimer interface formed by the loops comprising residues 221-232. Protein conformational changes upon binding of cognate DNA and cofactor Mg(2+) were monitored by tryptophan fluorescence of the single tryptophan mutant and wild-type endonuclease. The fluorescence decay of Trp246 is a triple exponential with lifetimes of 7, 3.5, and 0.7 ns. The decay-associated spectra of the 7- and 3.5-ns components have emission maxima at approximately 345 and approximately 338 nm in apoenzyme, which shift to approximately 340 and approximately 348 nm in the DNA complex. The fluorescence quantum yield of the single tryptophan mutant drops 30% in the DNA complex, as compared to 10% for wild-type endonuclease. Fluorescence changes of Trp104 upon binding of DNA were inferred by comparison of the decay-associated spectra of wild type and single tryptophan mutant. Fluorescence changes are related to changes in proximity and orientation of quenching functional groups in the tryptophan microenvironments, as seen in the crystal structures.  相似文献   

18.
The tryptophan environments of interleukins 1 alpha and 1 beta, immunomodulatory proteins with similar biological activities but only 25% sequence homology, were characterized by steady-state and dynamic fluorescence measurements. Both proteins exhibited similar emission maxima, but the emission intensity of IL-1 beta was greatly enhanced by increasing the ionic strength of the medium, whereas that of IL-1 alpha was unaffected. The two cytokines were also similarly quenched by the polar quencher acrylamide, but differences were observed for the ionic quenchers iodide and cesium. The fluorescence intensity decays of both cytokines were characterized by two (long and short) component lifetimes. However, the average lifetime of IL-1 beta (4.4 ns) was much longer than that of IL-1 alpha (1.93 ns). Taken together with the results of steady-state measurements, we suggest that the single tryptophan of IL-1 beta is statically quenched by neighboring charged residues, whereas the tryptophan fluorescence of IL-1 alpha is unaffected by ionic strength, and that the tryptophans of the two proteins have different accessibilities to ionic quenchers. The results are discussed in terms of similarities and differences in the tryptophan environments of the two proteins.  相似文献   

19.
Caspase-3, one of the major apoptotic proteins, is a cysteine protease and exists as an inactive zymogen in healthy cells. In this study, the dynamic nature of the rearrangements of two tryptophan residues (Trp 206 and Trp 214) in the active sites of caspase-3 during the activation was analyzed by measuring the fluorescence lifetimes. Significant changes in the lifetime occurred upon activation by the specific cleavage. In addition, two mutant proteins that have only one tryptophan residue also showed the similar changes. These data indicate that the activation of caspase-3 resulted in the reorganization of both tryptophan residues.  相似文献   

20.
Enzyme I of the bacterial phosphotransferase system is a protein component which undergoes a temperature-dependent monomer/dimer equilibrium. Reaction of sulfhydryl residues with SH-specific reagents inhibits both activity and dimerization. There are four cysteine residues available in each subunit, one of which (Cys 502) is proximate to one of the two tryptophan residues (Trp 498). Previous studies revealed two major lifetimes and spectra, suggesting distinct environments for tryptophan. In this paper, we examine the dynamic quenching of tryptophanyl fluorescence that occurs when an energy transfer acceptor, thio-2-nitrobenzoic acid (TNB), is covalently attached to the sulfhydryl groups. More precisely, we have traced the recovery of nativelike fluorescence lifetime components (and the concomitant loss of "reduced lifetime" amplitudes) that accompanies TNB release. The course of lifetime changes seen when a reducing reagent removes the quencher may be sensitive to a variety of effects, including different SH affinities, different proximities to Trp, changing availability for dimerization, or conformational changes. The prospective value of separating each lifetime component from the mixture is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号