首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The melanocyte-stimulating hormone receptor (MC1-R) is a central regulator of mammalian coat colour, encoded by the extension locus. In cattle, the dominant extension allele E(D) is associated with the production of black pigment in coloured areas. Genotyping of the MC1-R gene in a bull with mosaic expression of red vs. black pigment verified the existence of the E(D) allele, in spite of the fact that the majority of the animal is red coloured. No further mutations were found within the E(D) variant of the MC1-R gene, which was inherited from a completely red mother (genotype E(D)/e).  相似文献   

2.
Dominant black coat color in sheep is predicted to be caused by an allele E D at the extension locus. Recent studies have shown that this gene encodes the melanocyte stimulating hormone receptor (MC1-R). In mouse and fox, naturally occurring mutations in the coding region of MC1-R produce a constitutively activated receptor that switches the synthesis from phaeomelanin to eumelanin within the melanocyte, explaining the black coat color observed phenotypically. In the sheep, we have identified a Met→Lys mutation in position 73 (M73K) together with a Asp → Asn change at position 121 (D121N) showing complete cosegregation with dominant black coat color in a family lineage. Only the M73K mutation showed constitutive activation when introduced into the corresponding mouse receptor (mMC1-R) for pharmacological analysis; however, the position corresponding to D121 in the mouse receptor is required for high affinity ligand binding. The pharmacological profile of the M73K change is unique compared to the constitutively active E92K mutation in the sombre mouse and C123R mutation in the Alaska silver fox, indicating that the M73K change activates the receptor via a mechanism distinct from these previously characterized mutations. Received: 18 September 1997 / Accepted: 14 October 1998  相似文献   

3.
The melanocyte-stimulating hormone receptor (MC1-R) is a central regulator of mammalian coat colour, encoded by the extension locus. In cattle, the dominant extension allele ED is associated with the production of black pigment in coloured areas. Genotyping of the MC1-R gene in a bull with mosaic expression of red vs. black pigment verified the existence of the ED allele, in spite of the fact that the majority of the animal is red coloured. No further mutations were found within the ED variant of the MC1-R gene, which was inherited from a completely red mother (genotype ED/e).  相似文献   

4.
Massese is an Italian dairy sheep breed characterized by animals with black skin and horns and black or apparent grey hairs. Owing to the presence of these two coat colour types, this breed can be considered an interesting model to evaluate the effects of coat colour gene polymorphisms on this phenotypic trait. Two main loci have been already shown to affect coat colour in sheep: Agouti and Extension coding for the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes, respectively. The Agouti locus is affected by a large duplication including the ASIP gene that may determine the Agouti white and tan allele (A(Wt)). Other disrupting or partially inactivating mutations have been identified in exon 2 (a deletion of 5 bp, D(5); and a deletion of 9 bp, D(9)) and in exon 4 (g.5172T>A, p.C126S) of the ASIP gene. Three missense mutations in the sheep MC1R gene cause the dominant black E(D) allele (p.M73K and p.D121N) and the putative recessive e allele (p.R67C). Here, we analysed these ASIP and MC1R mutations in 161 Massese sheep collected from four flocks. The presence of one duplicated copy allele including the ASIP gene was associated with grey coat colour (P = 9.4E-30). Almost all animals with a duplicated copy allele (37 out of 41) showed uniform apparent grey hair and almost all animals without a duplicated allele (117 out of 120) were completely black. Different forms of duplicated alleles were identified in Massese sheep including, in almost all cases, copies with exon 2 disrupting or partially inactivating mutations making these alleles different from the A(Wt) allele. A few exceptions were observed in the association between ASIP polymorphisms and coat colour: three grey sheep did not carry any duplicated copy allele and four black animals carried a duplicated copy allele. Of the latter four sheep, two carried the E(D) allele of the MC1R gene that may be the cause of their black coat colour. The coat colour of all other black animals may be determined by non-functional ASIP alleles (non-agouti alleles, A(a)) and in a few cases by the E(D) Extension allele. At least three frequent ASIP haplotypes ([D(5):g.5172T], [N:g.5172A] and [D(5):g.5172A]) were detected (organized into six different diplotypes). In conclusion, the results indicated that coat colours in the Massese sheep breed are mainly derived by combining ASIP and MC1R mutations.  相似文献   

5.
By studying genes associated with coat colour, we can understand the role of these genes in pigmentation but also gain insight into selection history. North European short‐tailed sheep, including Swedish breeds, have variation in their coat colour, making them good models to expand current knowledge of mutations associated with coat colour in sheep. We studied ASIP and MC1R, two genes with known roles in pigmentation, and their association with black coat colour. We did this by sequencing the coding regions of ASIP in 149 animals and MC1R in 129 animals from seven native Swedish sheep breeds in individuals with black, white or grey fleece. Previously known mutations in ASIP [recessive black allele: g.100_105del (D5) and/or g.5172T>A] were associated with black coat colour in Klövsjö and Roslag sheep breeds and mutations in both ASIP and MC1R (dominant black allele: c.218T>A and/or c.361G>A) were associated with black coat colour in Swedish Finewool. In Gotland, Gute, Värmland and Helsinge sheep breeds, coat colour inheritance was more complex: only 11 of 16 individuals with black fleece had genotypes that could explain their black colour. These breeds have grey individuals in their populations, and grey is believed to be a result of mutations and allelic copy number variation within the ASIP duplication, which could be a possible explanation for the lack of a clear inheritance pattern in these breeds. Finally, we found a novel missense mutation in MC1R (c.452G>A) in Gotland, Gute and Värmland sheep and evidence of a duplication of MC1R in Gotland sheep.  相似文献   

6.
The melanocortin 1 receptor (MC1R) gene has been described as responsible for the black color in some breeds of sheep, but little is known about its function in many colored breeds, particularly those with a wide range of pigmentation phenotypes. The Brazilian Creole is a local breed of sheep from southern Brazil that has a wide variety of wool colors. We examined the MC1R gene (Extension locus) to search for the e allele and determine its role in controlling wool color variation in this breed. One hundred and twenty-five animals, covering the most common Creole sheep phenotypes (black, brown, dark gray, light gray, and white), were sequenced to detect the mutations p.M73K and p.D121N. Besides these two mutations, three other synonymous sites (429, 600, and 725) were found. The dominant allele (E(D): p.73K, and p.121N) was found only in colored animals, whereas the recessive allele (E(+): p.73M, and p.121D) was homozygous only in white individuals. We concluded that MC1R is involved in the control of wool color in Brazilian Creole sheep, particularly the dark phenotypes, although a second gene may be involved in the expression of the white phenotype in this breed.  相似文献   

7.
We have characterized two mutations in the MC1R gene of the blue variant of the arctic fox (Alopex lagopus) that both incorporate a novel cysteine residue into the receptor. A family study in farmed arctic foxes verified that the dominant expression of the blue color phenotype cosegregates completely with the allele harboring these two mutations. Additionally to the altered pigment synthesis, the blue fox allele suppresses the seasonal change in coat color found in the native arctic fox. Consequently, these findings suggest that the MC1R/agouti regulatory system is involved in the seasonal changes of coat color found in arctic fox.  相似文献   

8.
Variations in vertebrate skin and hair color are due to varied amounts of eumelanin (brown/black) and phaeomelanin (red/yellow) produced by the melanocytes. The melanocortin 1 receptor (MC1R) is a regulator of eumelanin and phaeomelanin production in the melanocytes, and MC1R mutations causing coat color changes are known in many vertebrates. We have sequenced the entire coding region of the MC1R gene in Black-boned, Nanping indigenous and Romney Marsh sheep populations and found two silent mutation sites of A12G and G144C, respectively. PCR-RFLP of G144C showed that frequency of allele G in Black-boned, Nanping indigenous and Romney Marsh sheep was 0.818, 0.894 and 0, respectively. Sheep with GG genotype had significantly higher (P < 0.05) tyrosinase activity than sheep with CC genotype in the all investigated samples. Moreover, there was significant effect of MC1R genotype on coat color, suggesting that MC1R gene could affect coat color but not black traits. There would be merit in further studies using molecular techniques to elucidate the cause of black traits in these Black-boned sheep.  相似文献   

9.
Deng WD  Yang SL  Huo YQ  Gou X  Shi XW  Mao HM 《Animal genetics》2006,37(6):586-588
Here we report for the first time the discovery of sheep that have black bones and black muscles. The spectral pattern of pigment extracted from tissues of these black-boned sheep is similar to that of black-boned Chinese silky fowl. Additionally, black-boned sheep have significantly higher plasma colour, tyrosinase activity and kidney function than normal sheep. Synonymous nucleotide substitutions in the tyrosinase (TYR) and melanocortin 1 receptor (MC1R) genes were detected in black-boned sheep when compared with the corresponding sequences in normal sheep. In addition, a missense mutation (215T>C) in exon 2 of tyrosinase-related protein 1 (TYRP1) was detected in black-boned sheep, and this resulted in a putative valine-to-alanine substitution at codon 68 (Val68Ala).  相似文献   

10.
The complete coding region of the melanocyte-stimulating hormone receptor (MC1-R) gene was characterized in species belonging to the two families Bovidae and Cervidae; cattle (Bos taurus), sheep (Ovis aries), goat (Capra hircus), muskox (Ovibos moschatus), roe deer (Capreolus capreolus), reindeer (Rangifer tarandus), moose (Alces alces), red deer (Cervus elaphus) and fallow deer (Dama dama). This well conserved gene is a central regulator of mammalian coat colour. Examination of the interspecies variability revealed a 5.3-6.8% divergence between the Cervidae and Bovidae families, whereas the divergence within the families were 1.0-3.1% and 1.2-4.6%, respectively. Complete identity was found when two subspecies of reindeer, Eurasian tundra reindeer (R.t. tarandus) and Svalbard reindeer (R.t. platvrhynehus), were analyzed. An rooted phylogenetic tree based on Bovidae and Cervidae MC1-R DNA sequences was in complete agreement with current taxonomy, and was supported by bootstrapping analysis. Due to different frequencies of silent vs. replacement mutations, the amino acid based phylogenetic tree contains several dissimilarities when compared to the DNA based phylogenetic tree.  相似文献   

11.
Melanin-concentrating hormone (MCH) and alpha-melanocyte-stimulating hormone (alpha-MSH) are known to exhibit mostly functionally antagonistic, but in some cases agonistic activities, e.g., in pigment cells and in the brain. Neuropeptide E-I (NEI) displays functional MCH-antagonist and MSH-agonist activity in different behavioral paradigms; the role of neuropeptide G-E (NGE) is not known. This study addressed the question of possible molecular interactions between alpha-MSH, MCH and the MCH-precursor-derived peptides NEI and NGE at the level of the pigment cell MCH receptor subtype (MCH-Rpc) and the different melanocortin (MC) receptors. Radioreceptor assays using [125I]MCH, [125l]alpha-MSH and [125I]NEI as radioligands and bioassays were performed with MCI-R-positive and MC1-R-negative mouse B16 melanoma cells and with COS cells expressing the different MC receptors. The IC50s of alpha-MSH and NEI or NGE for [125I]MCH displacement from mouse MCH-Rpc were 80-fold and, respectively, >300-fold higher than that of MCH, and the IC50s for MCH and NEI or NGE for [125I]alpha-MSH displacement from mouse MC1-R were 50,000-fold and >200,000-fold higher than that of alpha-MSH. No high-affinity binding sites for NEI were detected on B16 melanoma cells and there was no significant displacement of [1251]alpha-MSH by MCH, NEI or NGE with MC3-R, MC4-R and MC5-R expressed in COS cells. At concentrations of 100 nM to 10 microM, however, MCH, NEI and NGE induced cAMP formation and melanin synthesis which could be blocked by agouti protein or inhibitors of adenylate cyclase or protein kinase A. This shows that mammalian MCH-precursor-derived peptides may mimic MSH signalling via MC1-R activation at relatively high, but physiologically still relevant concentrations, as e.g. found in autocrine/paracrine signalling mechanisms.  相似文献   

12.
Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD) and Recessive Red (MC1Re). A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA), a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.  相似文献   

13.
The yellow mouse obesity syndrome is due to dominant mutations at the Agouti locus, which is characterized by obesity, hyperinsulinemia, insulin resistance, hyperglycemia, hyperleptinemia, increased linear growth, and yellow coat color. This syndrome is caused by ectopic expression of Agouti in multiple tissues. Mechanisms of Agouti action in obesity seem to involve, at least in part, competitive melanocortin antagonism. Both central and peripheral effects have been implicated in Agouti-induced obesity. An Agouti-Related Protein (AGRP) has been described recently. It has been shown to be expressed in mice hypothalamus and to act similarly to agouti as a potent antagonist to central melanocortin receptor MC4-R, suggesting that AGRP is an endogenous MC4-R ligand. Mice lacking MC4-R become hyperphagic and develop obesity, implying that agouti may lead to obesity by interfering with MC4-R signaling in the brain and consequently regulating food intake. Furthermore, food intake is inhibited by intracerebro-ventricular injection of a potent melanocortin agonist and was reversed by administration of an MC4-R antagonist. The direct cellular actions of Agouti include stimulation of fatty acid and triglyceride synthesis via a Ca2+-dependent mechanism. Agouti and insulin act in an additive manner to increase lipogenesis. This additive effect of agouti and insulin is demonstrated by the necessity of insulin in eliciting weight gain in transgenic mice expressing agouti specifically in adipose tissue. This suggests that agouti expression in adipose tissue combined with hyperinsulinemia may lead to increased adiposity. The roles of melanocortin receptors or agouti-specific receptor(s) in agouti regulation of adipocyte metabolism and other peripheral effects remain to be determined. In conclusion, both central and peripheral actions of agouti contribute to the yellow mouse obesity syndrome and this action is mediated at least in part by antagonism with melanocortin receptors and/or regulation of intracellular calcium.  相似文献   

14.
The melanocortin receptor 1 (MC1R) plays a central role in regulation of eumelanin (black/brown) and phaeomelanin (red/yellow) synthesis within the mammalian melanocyte and is encoded by the classical Extension (E) coat color locus. Sequence analysis of MC1R from seven porcine breeds revealed a total of four allelic variants corresponding to five different E alleles. The European wild boar possessed a unique MC1R allele that we believe is required for the expression of a wild-type coat color. Two different MC1R alleles were associated with the dominant black color in pigs. MC1R*2 was found in European Large Black and Chinese Meishan pigs and exhibited two missense mutations compared with the wild-type sequence. Comparative data strongly suggest that one of these, L99P, may form a constitutively active receptor. MC1R*3 was associated with the black color in the Hampshire breed and involved a single missense mutation D121N. This same MC1R variant was also associated with EP, which results in black spots on a white or red background. Two different missense mutations were identified in recessive red (e/e) animals. One of these, A240T, occurs at a highly conserved position, making it a strong candidate for disruption of receptor function.  相似文献   

15.
Melanocortin 1 receptor (MC1R), a major determinant of skin phototype frequently mutated in melanoma, is a Gs protein-coupled receptor that regulates pigment production in melanocytes. MC1R stimulation activates cAMP synthesis and the extracellular signal-regulated (ERK) ERK1 and ERK2. In human melanocytes, ERK activation by MC1R relies on cAMP-independent transactivation of the c-KIT receptor. Thus MC1R functional coupling to the cAMP and ERK pathways may involve different structural requirements giving raise to biased effects of skin cancer-associated mutations. We evaluated the impact of MC1R mutations on ERK activation, cAMP production and agonist binding. We found that MC1R mutations impair cAMP production much more often than ERK activation, suggesting less stringent requirements for functional coupling to the ERK pathway. We examined the crosstalk of the cAMP and ERK pathways in HBL human melanoma cells (wild-type for MC1R, NRAS and BRAF). ERK activation by constitutively active upstream effectors or pharmacological inhibition had little effect on MC1R-stimulated cAMP synthesis. High cAMP levels were compatible with normal ERK activation but, surprisingly, the adenylyl cyclase activator forskolin abolished ERK activation by MC1R, most likely by a cAMP-independent mechanism. These results indicate little crosstalk of the cAMP and ERK pathways in HBL melanoma cells. Finally, we studied cAMP accumulation in a panel of 22 human melanoma cell lines stimulated with MC1R agonists or forskolin. cAMP synthesis was often inhibited, even in cells wild-type for MC1R and NRAS. Therefore, the cAMP pathway is more frequently impaired in melanoma than could be predicted by the MC1R or NRAS genotype.  相似文献   

16.
Melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH) are known to exhibit mostly functionally antagonistic, but in some cases agonistic activities, e.g., in pigment cells and in the brain. Neuropeptide E-I (NEI) displays functional MCH-antagonist and MSH-agonist activity in different behavioral paradigms; the role of neuropeptide G-E (NGE) is not known. This study addressed the question of possible molecular interactions between α-MSH, MCH and the MCH-precursor-derived peptides NEI and NGE at the level of the pigment cell MCH receptor subtype (MCH-Rpc) and the different melanocortin (MC) receptors. Radioreceptor assays using [125I]MCH, [125I]α-MSH and [125I]NEI as radioligands and bioassays were performed with MC1-R-positive and MC1-R-negative mouse B16 melanoma cells and with COS cells expressing the different MC receptors. The IC50s of α-MSH and NEI or NGE for [125I]MCH displacement from mouse MCH-Rpc were 80-fold and, respectively, > 300-fold higher than that of MCH, and the IC50s for MCH and NEI or NGE for [125I]α-MSH displacement from mouse MC1-R were 50,000-fold and > 200,000-fold higher than that of α-MSH. No high-affinity binding sites for NEI were detected on B16 melanoma cells and there was no significant displacement of [125I]α-MSH by MCH, NEI or NGE with MC3-R, MC4-R and MC5-R expressed in COS cells. At concentrations of 100 nM to 10 μM, however, MCH, NEI and NGE induced cAMP formation and melanin synthesis which could be blocked by agouti protein or inhibitors of adenylate cyclase or protein kinase A. This shows that mammalian MCH-precursor-derived peptides may mimic MSH signalling via MC1-R activation at relatively high, but physiologically still relevant concentrations, as e.g. found in autocrine/paracrine signalling mechanisms.  相似文献   

17.
The melanocortin 1 receptor (MC1R): more than just red hair   总被引:14,自引:0,他引:14  
The melanocortin 1 receptor, a seven pass transmembrane G protein coupled receptor, is a key control point in melanogenesis. Loss-of-function mutations at the MC1R are associated with a switch from eumelanin to phaeomelanin production, resulting in a red or yellow coat colour. Activating mutations, in animals at least, lead to enhanced eumelanin synthesis. In man, a number of loss-of-function mutations in the MC1R have been described. The majority of red-heads (red-haired persons) are compound heterozygotes or homozygotes for up to five frequent loss-of-function mutations. A minority of redheads are, however, only heterozygote. The MC1R is, therefore, a major determinant of sun sensitivity and a genetic risk factor for melanoma and non-melanoma skin cancer. Recent work suggests that the MC1R also shows a clear heterozygote effect on skin type, with up to 30% of the population harbouring loss-of-function mutations. Activating mutations of the MC1R in man have not been described. The MC1R is particularly informative and a tractable gene for studies of human evolution and migration. In particular, study of the MC1R may provide insights into the lightening of skin colour observed in most European populations. The world wide pattern of MC1R diversity is compatible with functional constraint operating in Africa, whereas the greater allelic diversity seen in non-African populations is consistent with neutral predictions rather than selection. Whether this conclusion is as a result of weakness in the statistical testing procedures applied, or whether it will be seen in other pigment genes will be of great interest for studies of human skin colour evolution.  相似文献   

18.
19.
Molecular genetics and evolution of melanism in the cat family   总被引:1,自引:0,他引:1  
Melanistic coat coloration occurs as a common polymorphism in 11 of 37 felid species and reaches high population frequency in some cases but never achieves complete fixation. To investigate the genetic basis, adaptive significance, and evolutionary history of melanistic variants in the Felidae, we mapped, cloned, and sequenced the cat homologs of two putative candidate genes for melanism (ASIP [agouti] and MC1R) and identified three independent deletions associated with dark coloration in three different felid species. Association and transmission analyses revealed that a 2 bp deletion in the ASIP gene specifies black coloration in domestic cats, and two different "in-frame" deletions in the MC1R gene are implicated in melanism in jaguars and jaguarundis. Melanistic individuals from five other felid species did not carry any of these mutations, implying that there are at least four independent genetic origins for melanism in the cat family. The inferred multiple origins and independent historical elevation in population frequency of felid melanistic mutations suggest the occurrence of adaptive evolution of this visible phenotype in a group of related free-ranging species.  相似文献   

20.
Genetic variation in the melanocortin‐1 receptor (MC1R) locus is responsible for color variation, particularly melanism, in many groups of vertebrates. Fairy‐wrens, Maluridae, are a family of Australian and New Guinean passerines with several instances of dramatic shifts in plumage coloration, both intra‐ and inter‐specifically. A number of these color changes are from bright blue to black plumage. In this study, we examined sequence variation at the MC1R locus in most genera and species of fairy‐wrens. Our primary focus was subspecies of the white‐winged fairy‐wren Malurus leucopterus in which two subspecies, each endemic to islands off the western Australian coast, are black while the mainland subspecies is blue. We found fourteen variable amino acid residues within M. leucopterus, but at only one position were alleles perfectly correlated with plumage color. Comparison with other fairy‐wren species showed that the blue mainland subspecies, not the black island subspecies, had a unique genotype. Examination of MC1R protein sequence variation across our sample of fairy‐wrens revealed no correlation between plumage color and sequence in this group. We thus conclude that amino acid changes in the MC1R locus are not directly responsible for the black plumage of the island subspecies of M. leucopterus. Our examination of the nanostructure of feathers from both black and blue subspecies of M. leucopterus and other black and blue fairy‐wren species clarifies the evolution of black plumage in this family. Our data indicate that the black white‐winged fairy‐wrens evolved from blue ancestors because vestiges of the nanostructure required for the production of blue coloration exist within their black feathers. Based on our phylogeographic analysis of M. leucopterus, in which the two black subspecies do not appear to be each other's closest relatives, we infer that there have been two independent evolutionary transitions from blue to black plumage. A third potential transition from blue to black appears to have occurred in a sister clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号