首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
T cell development is regulated at two critical checkpoints that involve signaling events through the TCR. These signals are propagated by kinases of the Src and Syk families, which activate several adaptor molecules to trigger Ca(2+) release and, in turn, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation. In this study, we show that a constitutively active form of CaMKII antagonizes TCR signaling and impairs positive selection of thymocytes in mice. Following TCR engagement, active CaMKII decreases TCR-mediated CD3zeta chain phosphorylation and ZAP70 recruitment, preventing further downstream events. Therefore, we propose that CaMKII belongs to a negative-feedback loop that modulates the strength of the TCR signal through the tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP-2).  相似文献   

3.
Intestinal intraepithelial lymphocytes (IEL) from mice are greater than 80% CD3+ T cells and could be separated into four subsets according to expression of CD4 and CD8. In our studies designed to assess the functions of IEL, namely, cytokine production, it was important to initially characterize the various subsets of T cells that reside in IEL. The major subset was CD4-, CD8+ (75% of CD3+ T cells), which contained approximately 45 to 65% gamma/delta TCR+ and 35 to 45% alpha/beta TCR+ T cells. Approximately 7.5% of IEL T cells were CD4-, CD8- (double negative) and gamma/delta+ population. On the other hand, CD4+, CD8+ (double positive) and CD4+, CD8- fractions represented 10% and 7.5% of CD3+ T cells, respectively, which were all alpha/beta TCR+. Inasmuch as CD3+, CD4-, CD8+ T cells are a major subset of IEL which contain both gamma/delta TCR or alpha/beta TCR-bearing cells, the present study was focused on the capability of this subset of IEL T cells to produce the cytokines IFN-gamma and IL-5. Both gamma/delta TCR+ and alpha/beta TCR+ IEL spontaneously produced IFN-gamma and IL-5, although higher frequencies of cytokine spot-forming cells were associated with the alpha/beta TCR+ subset. Approximately 30% of CD8+, gamma/delta TCR+ cells produced both cytokines, whereas approximately 90% of alpha/beta TCR+ T cells produced either IFN-gamma or IL-5. Both gamma/delta TCR+ and alpha/beta TCR+ IEL possessed large quantities of cytokine-specific mRNA, clearly showing that these IEL were programmed for cytokine production. When IEL were activated with anti-gamma/delta or anti-CD8 antibodies, higher numbers of IFN-gamma and IL-5 spot-forming cells were noted. The present study has provided direct evidence that a major function of IEL involves cytokine production, and this is the first evidence that gamma/delta TCR+ cells in IEL possess the capability of producing both IL-5 and IFN-gamma.  相似文献   

4.
Ca2+/calmodulin-dependent protein kinase II is thought to participate in M3 muscarinic receptor-mediated acid secretion in gastric parietal cells. During acid secretion tubulovesicles carrying H+/K+-ATPase fuse with the apical membrane. We localized Ca2+/calmodulin-dependent protein kinase II from highly purified rabbit gastric tubulovesicles using Ca2+/calmodulin-dependent protein kinase II isoform-specific antibodies, in vitro phosphorylation and pharmacological inhibition of Ca2+/calmodulin-dependent protein kinase II activity by the potent Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62. The presence of Ca2+/calmodulin-dependent protein kinase II in tubulovesicles was shown by immunoblot detection of both Ca2+/calmodulin-dependent protein kinase II-gamma (54 kDa) and Ca2+/calmodulin-dependent protein kinase II-delta (56.5 kDa). The immunoprecipitated Ca2+/calmodulin-dependent protein kinase II from tubulovesicles showed Ca2+/calmodulin-dependent protein kinase activity by phosphorylating autocamtide-II, a specific synthetic Ca2+/calmodulin-dependent protein kinase II substrate. KN-62 inhibited the in vitro autophosphorylation of tubulovesicle-associated Ca2+/calmodulin-dependent protein kinase II (IC50 = 11 nM). During the search for potential Ca2+/calmodulin-dependent protein kinase II substrates we identified different proteins associated with tubulovesicles, such as synaptophysin and beta-tubulin immunoreactivity, which were identified using specific antibodies. These targets are known to participate in intracellular membrane traffic. Ca2+/calmodulin-dependent protein kinase II is thought to play an important role in regulating tubulovesicular motor activity and therefore in acid secretion.  相似文献   

5.
Human gamma delta T cells of peripheral blood can be divided in two groups in terms of their TCR as well as their behavior upon in vitro stimulation. The major subset expresses the TCR V-segments V gamma 9 and V delta 2 and proliferates in response to ligands revealed by various microorganisms, and the cell line Daudi in addition. The minor group is less homogenous on the gamma-chain but is almost completely identified by mAb against the V delta 1 segment; there is no ligand known to promote growth of these cells. Here we demonstrate that gamma delta T cells out of this subgroup are strongly stimulated in vitro by cells from several Burkitt's lymphoma cell lines. EBV infection of the Burkitt's lymphoma cell lines enhanced the stimulatory ability towards the T cells. Although EBV infection influenced the expression of a variety of cell surface molecules including ICAM-1 and LFA-3, no correlation to the gamma delta T cell-stimulating capacity became apparent. We conclude that Burkitt's lymphoma cells and transformed B cells express ligands of cellular origin for a hitherto poorly characterized subgroup of human gamma delta T cells.  相似文献   

6.
7.
Coxsackievirus B3 infections of C57BL/6 mice, which express the MHC class II IA but not IE Ag, results in virus replication in the heart but minimal myocarditis. In contrast, Bl.Tg.Ealpha mice, which are C57BL/6 mice transgenically induced to express IE Ag, develop significant myocarditis upon Coxsackievirus B3 infection. Despite this difference in inflammatory damage, cardiac virus titers are similar between C57BL/6 and Bl.Tg.Ealpha mice. Removing gammadelta T cells from either strain by genetic manipulation (gammadelta knockout(ko)) changes the disease phenotype. C57BL/6 gammadelta ko mice show increased myocarditis. In contrast, Bl.Tg.Ealpha gammadelta ko mice show decreased cardiac inflammation. Flow cytometry revealed a difference in the gammadelta cell subsets in the two strains, with Vgamma1 dominating in C57BL/6 mice, and Vgamma4 predominating Bl.Tg.Ealpha mice. This suggests that these two Vgamma-defined subsets might have different functions. To test this possibility, we used mAb injection to deplete each subset. Mice depleted of Vgamma1 cells showed enhanced myocarditis, whereas those depleted of Vgamma4 cells suppressed myocarditis. Adoptively transfusing enriched Vgamma4(+) cells to the C57BL/6 and Bl.Tg. Ealpha gammadelta ko strains confirmed that the Vgamma4 subset promoted myocarditis. Th subset analysis suggests that Vgamma1(+) cells biased the CD4(+) T cells to a dominant Th2 cell response, whereas Vgamma4(+) cells biased CD4(+) T cells toward a dominant Th1 cell response.  相似文献   

8.
The requirements for activation of the lytic machinery through CD2 of TCR gamma delta+/CD3+ cells were examined, by utilizing bispecific heteroconjugates containing anti-CD2 mAb cross-linked to anti-DNP. Contrary to the CD2 activation requirements in TCR alpha beta+/CD3+ cells, cytotoxic activity in TCR gamma delta+/CD3+ clones and TCR-/CD3- NK cell clones can be induced by heteroconjugates containing a single anti-CD2 (OKT11.1) mAb. Activation of TCR gamma delta+/CD3+ cells via CD2 is independent of heteroconjugates binding to CD16 (Fc gamma RIII), because heteroconjugates prepared from Fab fragments induced equal levels of lysis. Moreover, anti-CD16 mAb did not inhibit triggering via CD2 in TCR gamma delta+/CD3+ cells. In TCR-/CD3- NK cells, however, induction of cytotoxicity via CD2 is co-dependent on interplay with CD16. Anti-CD3 mAb blocked the anti-CD2 x anti-DNP heteroconjugate-induced cytotoxicity of TCR gamma delta+/CD3+ cells, indicating a functional linkage between CD2 and CD3 on these cells. We conclude that induction of lysis via CD2 shows qualitatively different activation requirements in TCR gamma delta+/CD3+, TCR alpha beta+/CD3+ CTL and TCR-/CD3- NK cells.  相似文献   

9.
The global immune response can be simplified into two components: the innate and the acquired systems. The innate immune response comprises primarily macrophages and NK cells, while B and T cells orchestrate the acquired response. Human Vgamma9Vdelta2 T cells represent a minor T cell subpopulation in blood (1-5%) that is activated via the TCR by small nonpeptidic molecules. Their percentage dramatically increases during the early phase of infection by intracellular pathogens, and they display many characteristics of NK cells, which places them at a unique position within the immune system. Our aim was to explore the behavior of these cells when they are activated by a receptor that is common to NK and alphabeta T cells, and to determine signaling pathways and biological responses induced in these cells through this receptor. Thus, we investigated whether Vgamma9Vdelta2 T cells behave as NK cells or as alphabeta T cells. We demonstrated that IL-2 activates not only STAT3, STAT5, the phosphatidylinositol 3-kinase pathway, and extracellular signal-regulated kinase-2 pathway, but also STAT4 as in NK cells, and the p38 mitogen-activated protein kinase pathway as in alphabeta T cells. Moreover, IL-2 induces the production of IFN-gamma in Vgamma9Vdelta2 T cells as observed in NK cells. Due to their double profiles, Vgamma9Vdelta2 T cells are at the interface of the innate and the acquired immune response and may therefore not only modulate the activity of innate cells, but also influence Th1/Th2 differentiation.  相似文献   

10.
A signaling role for T cell leukemia-1 (TCL1) during T cell development or in premalignant T cell expansions and mature T cell tumors is unknown. In this study, TCL1 is shown to regulate the growth and survival of peripheral T cells but not precursor thymocytes. Proliferation is increased by TCL1-induced lowering of the TCR threshold for CD4(+) and CD8(+) T cell activation through both PI3K-Akt and protein kinase C-MAPK-ERK signaling pathways. This effect is submaximal as CD28 costimulation coupled to TCL1 expression additively accelerates dose-dependent T cell growth. In addition to its role in T cell proliferation, TCL1 also increases IFN-gamma levels from Th1-differentiated T cells, an effect that may provide a survival advantage during premalignant T cell expansions and in clonal T cell tumors. Combined, these data indicate a role for TCL1 control of growth and effector T cell functions, paralleling features provided by TCR-CD28 costimulation. These results also provide a more detailed mechanism for TCL1-augmented signaling and help explain the delayed occurrence of mature T cell expansions and leukemias despite tumorigenic TCL1 dysregulation that begins in early thymocytes.  相似文献   

11.
In this study we confirm earlier reports of an increase of the proportion of T and CD4+ lymphocytes and a decrease of B and CD8+ lymphocytes in cerebrospinal fluid (CSF) as compared to peripheral blood (PB) in MS patients. In addition we now demonstrate that this difference between CSF and PB lymphocyte populations is of the same magnitude in healthy individuals suggesting that it is physiological and not associated with disease. Functionally distinct subsets of the T human helper cell (CD4+) population have previously been defined by the monoclonal antibodies 4B4 (CDw29), Leu-18 (CD45R), and UCHL-1. In the present investigation we demonstrate a selective increase in the proportion of CD4+CDw29+CD45R-UCHL-1+ lymphocytes in CSF as compared to PB of both MS patients and healthy individuals, which strongly indicates that also this enrichment is physiological rather than associated with disease. A possible relationship between this subset of CD4+ lymphocytes and T memory cells is discussed.  相似文献   

12.
Allergic airway inflammation and hyperreactivity are modulated by gammadelta T cells, but different experimental parameters can influence the effects observed. For example, in sensitized C57BL/6 and BALB/c mice, transient depletion of all TCR-delta(+) cells just before airway challenge resulted in airway hyperresponsiveness (AHR), but caused hyporesponsiveness when initiated before i.p. sensitization. Vgamma4(+) gammadelta T cells strongly suppressed AHR; their depletion relieved suppression when initiated before challenge, but not before sensitization, and they suppressed AHR when transferred before challenge into sensitized TCR-Vgamma4(-/-)/6(-/-) mice. In contrast, Vgamma1(+) gammadelta T cells enhanced AHR and airway inflammation. In normal mice (C57BL/6 and BALB/c), enhancement of AHR was abrogated only when these cells were depleted before sensitization, but not before challenge, and with regard to airway inflammation, this effect was limited to C57BL/6 mice. However, Vgamma1(+) gammadelta T cells enhanced AHR when transferred before challenge into sensitized B6.TCR-delta(-/-) mice. In this study Vgamma1(+) cells also increased levels of Th2 cytokines in the airways and, to a lesser extent, lung eosinophil numbers. Thus, Vgamma4(+) cells suppress AHR, and Vgamma1(+) cells enhance AHR and airway inflammation under defined experimental conditions. These findings show how gammadelta T cells can be both inhibitors and enhancers of AHR and airway inflammation, and they provide further support for the hypothesis that TCR expression and function cosegregate in gammadelta T cells.  相似文献   

13.
14.
15.
16.
17.
Ly49 and CD94/NKG2 inhibitory receptors are predominantly expressed on murine NK cells, but they are also expressed on a subpopulation of peripheral CD8 memory TCR alphabeta lymphocytes. In this study we demonstrate that Ly49E and CD94/NKG2 receptors are expressed on mature TCR Vgamma3(+) cells in the fetal thymus. Expression correlated with a memory phenotype, such as expression of CD44, 2B4, and IL-2Rbeta (CD122), and absence of IL-2Ralpha (CD25) expression. No expression of Ly49A, C, D, G2, or I receptors was observed. This phenotype is similar to that of fetal thymic NK cells. Skin-located Vgamma3 T cells, the progeny of fetal thymic Vgamma3 cells, also expressed CD94/NKG2 and Ly49E but not the other members of the Ly49 family. The development and survival of Ly49E(+) or CD94/NKG2(+) Vgamma3 T lymphocytes was not dependent upon expression of MHC class I molecules. The cytotoxicity of TCR Vgamma3 cells was inhibited when Qdm, the ligand for CD94/NKG2, was presented by Qa1(b)-transfected target cells. Also, upon cross-linking of CD94/NKG2 with mAb 3S9, TCR Vgamma3 thymocytes were prevented from killing FcgammaR(+) P815 target cells. These effects were most pronounced in the CD94/NKG2(high) subpopulation as compared with the CD94/NKG2(low) subpopulation of Vgamma3 cells. Our data demonstrate that Vgamma3 T cells expressing inhibitory Ly49E and CD94/NKG2 receptors are mature and display a memory phenotype, and that CD94/NKG2 functions as an inhibitory receptor on these T lymphocytes.  相似文献   

18.
The reactivity of Lyt-2+ or L3T4+ T cells stimulated with either mutant class I or class II MHC alloantigens was studied. Whereas stimulation with class I MHC antigens induced only Lyt-2+ T cells to proliferate and to secrete IL 2, stimulation with class II MHC alloantigens induced L3T4+ but not Lyt-2+ T cells. When the frequencies of precursors of IL 2-secreting T lymphocytes (IL 2TL-p) were determined by limiting dilution analyses, class I MHC-reactive Lyt-2+ T cells displayed frequencies (f = 1/200) as high in magnitude as those within class II MHC-reactive L3T4+ (f = 1/100). Clonally developing IL 2TL of either T cell subset were antigen-specific, as shown in split-culture experiments. Whereas L3T4+ helper TL could be induced to specific IL 2 secretion over a long time period (days 3 to 9), Lyt-2+ TL showed a marked time optimal on day 4; thereafter, the number of TL colonies inducible to secrete IL 2 decreased steadily. IL 2 production and IL 2TL-p frequencies of unseparated T responder cells were not the numerical superposition of the two individual T cell subsets (Lyt-2+ + L3T4+); the latter finding is likely to reflect regulatory influences of Lyt-2+ T cells on IL 2-secreting L3T4+ T cells.  相似文献   

19.
In immune cells, proinflammatory cytokine gene expression is regulated by glucocorticoids, whereas migration-inhibitory factor (MIF), a pleiotropic cytokine, has the unique property of counteracting the inhibitory effect of glucocorticoids on TNF-alpha and IL-1beta secretion. A few lines of evidence suggest that gammadelta T cells play an important role in immunoregulation. However, it is unknown whether human gammadelta T cells participate in regulating MIF secretion, and how gammadelta T cells, glucocorticoids, and cytokines converge to give a unified physiological response. In this study, we demonstrate that human Vgamma2Vdelta2 T cells augment MIF secretion. Remarkably, these Vgamma2Vdelta2 T cells, functioning similarly to MIF in part, counteracted inhibition of dexamethasone on production of IL-1beta and TNF-alpha. SCID mice reconstituted with human PBMC that were mock depleted of Vdelta2 T cells and repeatedly infected with lethal dose of Escherichia coli had shorter survival time than those reconstituted with PBMC that were depleted of Vdelta2 T cells. Thus, human Vgamma2Vdelta2 T cells are likely to play broad-spectrum roles in immunoregulation and immunopathology by influencing MIF secretion and the immunomodulatory function of glucocorticoids.  相似文献   

20.
Human lymphocytes expressing the gammadelta TCR represent a minor T cell subpopulation found in blood. The majority of these cells express Vgamma9Vdelta2 determinants and respond to nonpeptidic phosphoantigens. Several studies have shown that, in vivo, the percentage of Vgamma9Vdelta2 T cells dramatically increases during pathological infection, leading to the hypothesis that they play an important role in the defense against pathogens. However, the specific mechanisms involved in this response remain poorly understood. It has been established that Vgamma9Vdelta2 T cells display potent cytotoxic activity against virus-infected and tumor cells, thereby resembling NK cells. In this study, we show that, upon stimulation by nonpeptidic Ags, Vgamma9Vdelta2 T cells express FcgammaRIIIA (CD16), a receptor that is constitutively expressed on NK cells. CD16 appears to be an activation Ag for Vgamma9Vdelta2 T cells. Indeed, ligation of CD16 on Vgamma9Vdelta2 T cells leads to TNF-alpha production. This TNF-alpha production, which is dependent (like that induced via the TCR-CD3 complex) on the activation of the p38 and extracellular signal-regulated kinase-2 mitogen-activated protein kinases, can be modulated by CD94 NK receptors. Therefore, it appears that Vgamma9Vdelta2 T cells can be physiologically activated by two sequential steps via two different cell surface Ags: the TCR-CD3 complex and the FcgammaRIIIA receptor, which are specific cell surface Ags for T lymphocytes and NK cells, respectively. This strongly suggests that, in the general scheme of the immune response, Vgamma9Vdelta2 T cells represent an important subpopulation of cells that play a key role in the defense against invading pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号