首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoinduction and photoinhibition of germination in seed from a homozygous tobacco (Nicotiana tabacum L.) line containing an introduced oat phyA cDNA (encoding phytochrome A) is compared with that of isogenic wild-type (WT) tobacco. Under continuous irradiation by a light source with a low redfar-red (RFR) ratio the transgenic tobacco seed appeared to be less susceptible to photoinhibition of germination compared with WT seed. However, induction of germination following a short pulse by R (666 nm) was not enhanced in the genotype transformed by oat phyA cDNA compared with the WT; neither did germination of the transgenic tobacco seed show an increased sensitivity to saturating pulses of light of longer wavelengths (666–730 nm). In seeds of transgenic Arabidopsis thaliana (L.) Heynh. which contained an introduced phytochrome-B-encoding cDNA, levels of dark germination were enhanced, consistent with mediation of response by phytochrome B-Pfr. The germination behaviour of Arabidopsis genotypes wich contained an introduced cDNA encoding phytochrome A, however, did not significantly differ from that of the WT.Abbreviations ABO seed transformed with Arabidopsis phyB - cDNA; CaMV cauliflower mosaic virus - FR far-red light - Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Pfr/Ptot phytochrome photoequilibrium - R red light - RBO seed transformed with rice phyB cDNA - RFR quantum ratio of red and far-red light - WL white light - WL + FR whitelight supplemented with far-red light - WT wild type The authors wish to thank R.D. Vierstra (Department of Horticulture, University of Wisconsin-Madison, USA) for providing the transgenic tobacco line, and M.T. Boylan, D. Wagner and P.H. Quail (U.C. Berkeley/USDA Plant Gene Expression Center, Albany, Calif. USA) for providing the transgenic Arabidopsis lines. The work presented in this paper was funded by grants from the Agricultural and Food Research Council (H.S., A.C.M., G.C.W.).  相似文献   

2.
Fluence response curves for red light-induced germination of thermodormant (TD) seeds of Lactuca sativa L. show two regions that differ in their light sensitivity. In the region of high sensitivity, the germination responses differ between seed batches and can be altered by dark storage or far red irradiation. Induction of germination in far red dormant (FRD) seeds requires far higher fluences. Action spectra for induction to 60% germination were determined for these various response types. Spectra for the regions of low sensitivity response are similar for TD and FRD seeds. In comparison, the action spectrum for the highly sensitive response in TD seeds is significantly shifted to longer wavelengths. Analogous differences exist in the action spectra for far red reversal of the red induced germination responses. Germination induction in the low sensitivity region shows repeated red-far red reversibility. Far red reversal of red induction in the high sensitivity region does not saturate even at the highest far red fluences available and requires increased red fluences for subsequent reinduction. A model quantitatively accounting for these observations is presented. It is pointed out that action spectra of processes involving photoreversible pigments with partly overlapping absorption spectra in general are not identical with the absorption spectra of the partners. They should depend upon the degree of phototransformation required to elicit a given physiological response. In the case of induction of lettuce seed germination the observed action spectra can be interpreted as reflecting different requirements for P fr of the various response types. Our results do not necessitate the assumption of spectroscopically different forms of phytochrome in these seeds.Abbreviations TD thermodormant - FRD far red dormant - P phytochrome - P r red absorbing form of P - P fr far red absorbing form of P  相似文献   

3.
Germination of spores of Dryopteris fllix-mas has been induced by two pulses of saturating red light, separated by a dark period of about 8 to 24 h. By chosing different wavelengths, different Pfr/Ptot levels could be established. Thus, by a “null method” the second pulse could be used as a “test pulse”, determining the actual Pfr level remaining from the “start pulse”, and thus providing information about an apparent Pfr decay. It cannot be decided yet whether this apparent Pfr decay results from dark destruction or dark reversion. The apparent Pfr decay depends, as expected, on the temperature, being accelerated with increasing temperatures. Moreover, the later after sowing that the decay is tested, the faster it proceeds; a tentative interpretion is that newly synthesized Pr undergoes faster decay after phototransformation than that phytochrome pool present in the resting spores. A third factor that influences the apparent Pfr decay is the Pfr/Ptot level established by the first pulse (start pulse). The lower this level, the slower the decay kinetics. This could be due to phytochrome biosynthesis partly compensating for Pfr destruction, and the relative contribution of this biosynthesis to the total effect increases with lower Pfr levels. Spores of D. paleacea yield virtually the same results. Whatever the real basis of the observed Pfr decay, i.e. destruction, reversion, or a combination of these reactions with biosynthesis, it can be concluded that modification of this Pfr decay by various factors is the basis of the effect of those factors on light-induced germination.  相似文献   

4.
D. Grubišić  R. Konjević 《Planta》1990,181(2):239-243
Pulsed light and nitrate exhibit an interactive effect on the germination ofPaulownia tomentosa Steud. seeds that require long periods of light irradiation. Two pulses of red light (R), separated by an adequately long dark interval, substitute for continuous prolonged irradiation. A far-red (FR) pulse given at the beginning of the dark interval inhibits germination, while it has no effect if given at the end. The requirement for certain ratios of the far-red-absorbing form of phytochrome/total phytochrome (Pfr/Ptot) differs when a FR+R-pulse is given as the first or second of two pulses (FR+R or R) separated by a dark interval. An equal decrease of the Pfr/Ptot ratio leads to a more pronounced decrease in germination when the pulse of the same FR+R ratio is given as the second pulse at the end of the dark interval. The length of dark interval between light pulses needed for maximal germination, differed in (i) seeds with a natural requirement for long periods of light irradiation from that in (ii) seeds with their long light requirement imposed by two weeks of imbibition in darkness or by (iii) imbibition in 40% heavy water. However, a single R pulse was sufficient to induce a high percentage of germination if the seeds were supplied with KNO3 (10 mM) from the onset of imbibition up to the onset of light. This effect decreased with a delayed time of application, and was prevented if FR preceded the KNO3 application. We dedicate this paper to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

5.
Fluence rate-response curves were determined for the inhibition of hypocotyl growth in 54 h old dark-grownSinapis alba L. seedlings by continuous or hourly 5 min red light irradiation (24 h). In both cases a fluence rate-dependence was observed. More than 90% of the continuous light effect could be substituted for by hourly light pulses if the total fluence of the two different light regimes was the same. Measurements of the far red absorbing form of phytochrome ([P fr]) and [P fr]/[P tot] (total phytochrome) showed a strong fluence rate-dependence under continuous and pulsed light which partially paralleled the fluence rate-response curves for the inhibition of the hypocotyl growth.Abbreviations R red - HIR high irradiance response - P rfr phytochrome in its red, far-red absorbing form - [P tot]=[P r]+[P fr] =k 1/(k 1+k 2): photoequilibrium of phytochrome at wavelength , wherebyk 1,2 rate constants ofP rP fr,P frP r photoconversion - [P fr]/[P tot]  相似文献   

6.
Germination of Kalanchoë blossfeldiana Poelln. seeds is absolutely light-requiring. Germination of one seed is the result of one out of three reactions, viz. the very low fluence response (VLFR), the low fluence response (LFR) and the high fluence response/high irradiance response. In order to demonstrate the involvement of phytochrome for both photoresponses, i.e. VLFR and LFR, action spectra for induction were determined. Fluence-response data are analyzed by means of probit analysis in order to calculate the seed population parameters, with special attention to μ, or the fluence for half-maximal induction, and B, the slope in the probit diagram. Laser light was used between 620 and 800 nanometers to analyze the VLFR. Phytochrome is responsible for both photoresponses: the VLFR action spectrum demonstrates an exponential decrease in apparent photoconversion cross-section (Pr → Pfr) up to about 800 nanometers. Assuming that Pr:Pfr-X and Pfr:Pfr-X are the effectors for the VLFR and the LFR, respectively, we estimate an average induction threshold of about 0.003% Pr:Pfr for the VLFR and about 1% Pfr:Pfr for the LFR among individuals of the seed population.  相似文献   

7.
Summary Germination of Amaranthus caudatus is inhibited by light, far-red being the most effective part of the spectrum. At temperatures of 25° and below there is a low final germination percentage under continuous far-red whereas above 25° there is only a delaying effect. In the presence of a saturating concentration of gibberellic acid (GA3) at 25° seeds germinate under continuous far-red although they are delayed. At 25° seeds exposed to 48 hr far-red fail to germinate when transferred to darkness. This induced dormancy can be broken by a single short exposure to red light given at any time after the far-red illumination. This effect of short red can be reversed by a subsequent short period of far-red indicating that the seeds are phytochrome controlled. Although most seeds have escaped from the reversing effect of short far-red after an intervening dark period of 5 hours, germination is greatly reduced by continuous far-red at this time. Results of exposing seeds to varying periods of far-red before and after dark imbibition are interpreted in terms of a continual production of phytochrome in its active P fr form and a requirement for P fr action over a long period of time. Effects of intermittent and continuous low intensity far-red on the inhibition of germination provides further evidence for a low energy photoreaction involving phytochrome. Effects on Germination Index of continuous illumination with various light sources maintaining different P fr /P total ratios have been investigated. The results suggest that the proportion of phytochrome in the P fr form is the most important factor in the regulation of germination. A scheme for the phytochrome control of germination in Amaranthus caudatus is presented and possible explanations for the dependence on P fr /P total ratio are discussed.Holder of a Science Research Council Studentship.  相似文献   

8.
Phytochrome was measured spectrophotometrically in different tissues of the upper (positively photoblastic) and lower (negatively photoblastic) seeds of the cocklebur (Xanthium pennsylvanicum Wallr.). Axial parts of the seeds, in particular parts of the radicle, contained high levels of phytochrome, while cotyledonary parts contained only low levels. These results were consistent with the distribution of the light-sensitive areas of the seeds that were associated with germination. Phytochrome levels in both types of dimorphic seeds increased gradually with increasing duration of dark imbibition for 4–8 h, then the rates of increase in levels of phytochrome accelerated. In both types of seed, some phytochrome was measurable even before imbibition. In the lower seeds, up to 20% of the phytochrome was occasionally observed as Pfr in samples imbibed in darkness for a short time (up to 12 h). A slight blue shift of the peak of PT in the difference spectrum of phytochrome was observed in the case of lower seeds imbibed for 0–2 h. These results suggest that, to some extent, the lower axes contain dehydrated Pfr or intermediate(s) in the photoconversion of phytochrome. The dark reactions of Pfr were also examined in excised axes of both types of dimorphic seed after they had been pre-imbibed for 16 h in darkness. Dark destruction of Pfr was observed in both types of seed. In addition, net increases in levels of Pr were observed in the dark controls and in the samples irradiated with red light after the level of Pfr diminished. No ‘inverse’ dark reversion from Pr to Pfr was detected. Thus, after 16 h of imbibition, there were no differences in terms of properties of phytochrome between the two types of seed, and the different responses to light of upper and lower seeds might depend mainly on a difference in the physiological state of the two types of seed rather than the properties of phytochrome.  相似文献   

9.
Abstract Phytochrome-mediated anthocyanin synthesis of the mustard seedling (Sinapis alba L.) was investigated. Light pre-treated and dark-grown seedlings differing in responsiveness and level of phytochrome (Ptot) were compared. The data obtained support the traditional view that a seedling measures the amount of Pfr. The alternative view that a plant measures the Pfr/Ptot ratio does not seem to be compatible with the data obtained with the mustard seedling.  相似文献   

10.
Variation in dynamics of phytochrome A in Arabidopsis ecotypes and mutants   总被引:2,自引:0,他引:2  
Phytochromes are photoreceptors in plants which can exist in two different conformations: the red light‐absorbing form (Pr) and the far‐red light‐absorbing form (Pfr), depending on the light quality. The Pfr form is the physiologically active conformation. To attenuate the Pfr signal for phytochrome A (phyA), at least two different mechanisms exist: destruction of the molecule and dark reversion. Destruction is an active process leading to the degradation of Pfr. Dark reversion is the light‐independent conversion of physiologically active Pfr into inactive Pr. Here, we show that dark reversion is not only an intrinsic property of the phytochrome molecule but is modulated by cellular components. Furthermore, we demonstrate that dark reversion of phyA may be observed in Arabidopsis ecotype RLD but not in other Arabidopsis ecotypes. For the first time, we have identified mutants with altered dark reversion and destruction in a set of previously isolated loss of function PHYA alleles (Xu et al. Plant Cell 1995, 7, 1433–1443). Therefore, the dynamics of the phytochrome molecule itself need to be considered during the characterization of signal transduction mutants.  相似文献   

11.
P. Kunzelmann  M. Iino  E. Schäfer 《Planta》1988,176(2):212-220
The lateral fluence-rate gradients in unilaterally irradiated maize (Zea mays L.) coleoptiles were calculated on the basis of the proportions of P fr (far-red-absorbing form of phytochrome) measured spectroscopically in transverse slices of the coleoptiles (top 1 cm). The results showed the occurrence of significant gradients that are wavelength-dependent. The gradient at 449 nm was steeper than those measured at 516, 534 and 551 nm, which were steeper than that measured at 665 nm. The ratios between the sides proximal and distal to the light source were, for example, 1:0.12 (449 nm), 1:0.23 (534 nm), and 1:0.28 (665 nm). Fluence-response curves for coleoptile phototropism (first positive curvature produced by less than 100 s unilateral irradiation) were measured at 449, 516, 534 and 551 nm. Comparison of the threshold fluences indicated that the responsiveness to 551 nm is about 104.8 less than that to 449 nm. Increasing wavelengths led to a decrease in maximal curvature, which correlated with the decrease of the fluence-rate ratios between the proximal and distal sides. Phototropic fluence-response curves were also measured using bilateral irradiation (449 nm). In one set of experiments, the fluence ratio was kept constant (either 1:1/2, 1:1/4 or 1:1/16) and the total fluence was varied, and in the other set the fluence applied to one side was kept constant and the fluence ratio was varied. A simple model based on the assumption that only one photoreaction occurs, and that the response is a function of the difference between the proximal and distal sides in the local photoreceptor action was tested. A fluence-response curve for this local photoreceptor action was calculated based on the fluence-rate ratio and the phototropic fluence-response curve measured for 449 nm. This curve was used, in conjunction with the measured fluence-rate ratios, as a basis for calculating phototropic fluence-response curves for other wavelengths and those for 449 nm obtained with bilateral irradiation. The calculated fluence-response curves showed excellent agreement with the experimental data. It is concluded that the threshold for maize coleoptile phototropism reflects the apparent photoconversion cross-section of the blue-light receptor whereas the maximal curvature depends on the steepness of the light gradient across the coleoptile.Abbreviations and symbols I(x) fluence rate at the depth x - P fr phytochrome (far-red absorbing) - P r phytochrome (red absorbing) - P tot total phytochrome (P r+P fr) - photoconversion cross-section  相似文献   

12.
Phytochrome in seeds of Amaranthus caudatus   总被引:1,自引:1,他引:0  
Summary Dry seeds of Amaranthus caudatus show little or no photoreversible absorption changes, attributable to phytochrome. During imbibition phytochrome appears in two phases, one immediately after sowing and the second after about 8 hr. Experiments at different temperatures and under continuous illumination with red, far-red and blue light suggest that there are two pools of phytochrome. The first phase in the appearance of phytochrome could be due to the change in optical properties of the sample on hydration or to rehydration of inactive phytochrome, or both. The second phase probably represents phytochrome synthesis. It is absent at 0° and precedes the water uptake associated with germination by some 10 hr. This second pool of phytochrome does not accumulate in red and blue illuminated seeds indicating that the rate of P fr decay is more rapid than the rate of phytochrome synthesis. The difference spectra of phytochrome in both 2 hr imbibed seeds and 72 hr old seedlings show peaks of absorption at 663 and 735 nm. The presence of P fr in dark imbibed seeds and the process of inverse reversion of P r to P fr in darkness have been demonstrated. The results are discussed in relation to previous hypotheses for the mechanism of photocontrol of Amaranthus seed germination.  相似文献   

13.
Helga Kasemir  Hans Mohr 《Planta》1981,152(4):369-373
Chlorophyll a (Chl a) accumulation in the cotyledons of Scots pine seedlings (Pinus sylvestris L.) is much higher in the light than in darkness where it ceases 6 days after germination. When these darkgrown seedlings are treated with continuous white light (3,500 lx) a 3 h lag phase appears before Chl a accumulation is resumed. The lag phase can be eliminated by pretreating the seedlings with 7 h of weak red light (0.14 Wm-2) or with 14 red light pulses separated by relatively short dark periods (<100 min). The effect of 15s red light pulses can be fully reversed by 1 min far-red light pulses. This reversibility is lost within 2 min. In addition, the amount of Chl a formed within 27 h of continuous red light is considerably reduced by the simultaneous application of far-red (RG 9) light. It is concluded that phytochrome (Pfr) is required not only for the elimination of the lagphase but also to maintain a high rate of Chl a accumulation in continuous light. Since accumulation of 5-aminolevulinate (ALA) responds in the same manner as Chl a accumulation to a red light pretreatment it is further concluded that ALA formation is the point where phytochrome regulates Chl biosynthesis in continuous light. No correlation has been found between ALA and Chl a formation in darkness. This indicates that in a darkgrown pine seedling ALA formation is not rate limiting for Chl a accumulation.Abbreviations Chl chlorophyll(ide) - PChl protochlorophyll(ide) - ALA 5-aminolevulinate - Pr the red absorbing form of phytochrome - Pfr the far-red absorbing form of phytochrome - Ptot total phytochrome ([Pr]+[Pfr])  相似文献   

14.
N. Duell-Pfaff  E. Wellmann 《Planta》1982,156(3):213-217
Flavonoid synthesis in cell suspension cultures of parsley (Petroselinum hortense Hoffm.) occurs only after irradiation with ultraviolet light (UV), mainly from the UV-B (280–320 nm) spectral range. However, it is also controlled by phytochrome. A Pfr/Ptot ratio of approximately 20% is sufficient for a maximum phytochrome response as induced by pulse irradiation. Continuous red and far red light, as well as blue light, given after UV, are more effective than pulse irradiations. The response to blue light is considerably greater than that to red and far red light. Continuous red and blue light treatments can be substituted for by multiple pulses and can thus probably be ascribed to a multible induction effect. Continuous irradiations with red, far red and blue light also increase the UV-induced flavonoid synthesis if given before UV. The data indicate that besides phytochrome a separate blue light photoreceptor is involved in the regulation of the UV-induced flavonoid synthesis. This blue light receptor seems to require the presence of Pfr in order to be fully effective.Abbreviations HIR high irradiance response - Pfr far red absorhing form of phytochrome - Ptet total phytochrome - UV ultraviolet light  相似文献   

15.
Monospore germination, in Bangia atropurpurea (Roth) C. Ag. [= B. fuscopurpurea (Dillw.) Lyngb.] is light-dependent. In white light, the percent germination increases with increasing photon fluence rate until the response is saturated at 35 μmol · m?2· s?1. At a saturating photon fluence rate in an 18:6 h L:D cycle, 9 days are required for maximum germination. Green light is the most effective spectral region for monospore germination, although the process can occur in red and blue light if sufficiently high photon fluence rates are provided. Monospore germination and photosynthetic oxygen evolution are completely inhibited by DCMU at a concentration of 1 × 10?6 M. Germination is reduced in a low CO2 atmosphere and does not occur in the dark when glucose, maltose or inositol are supplied. It is concluded that photosynthesis is required for monospore germination.  相似文献   

16.
Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5.) induction in cotyledons from 96-h dark-grown Lycopersicon esculentum Mill. was studied in response to continuous light and hourly light pulses (blue, red, far red). The increases of PAL promoted by blue and red pulses are reversed completely by immediately following 758 nm irradiations. The response to continuous red light could be substituted for by hourly 6-min red light pulses. The effect of continuous red treatments is mainly due to a multiple induction effect of phytochrome. In contrast to red light, hourly light pulses with far red and blue, light can only partially substitute for continuous irradiation. The continuous blue response could be due to a combination of a multiple induction response and of a high irradiance response of phytochrome. The continuous far red response, could represent a high irradiance response of phytochrome. Dichromatic irradiations indicate that phytochrome is the photoreceptor controlling the light response (PAL) in tomato seedlings.Abbreviations Norflurazon NF-4-chloro-5-(methylamino)-2-(,,,-trifluoro-m-tolyl)-3 (2H) pyridazinone - PAL phenylalanine ammonia-lyase - phytochrome photoequilibrium Pfr/Ptot - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome: Pr+Pfr  相似文献   

17.
The roles of different phytochromes have been investigated in the photoinduction of several chlorophyll a/b-binding protein genes (CAB) of Arabidopsis thaliana. Etiolated seedlings of the wild type, a phytochrome A (PhyA) null mutant (phyA), a phytochrome B (PhyB) null mutant (phyB), and phyA/phyB double mutant were exposed to monochromatic light to address the questions of the fluence and wavelength requirements for CAB induction by different phytochromes. In the wild type and the phyB mutant, PhyA photoirreversibly induced CAB expression upon irradiation with very-low-fluence light of 350 to 750 nm. In contrast, using the phyA mutant, PhyB photoreversibly induced CAB expression with low-fluence red light. The threshold fluences of red light for PhyA- and PhyB-specific induction were about 10 nmol m-2 and 10 mumol m-2, respectively. In addition, CAB expression was photoreversibly induced with low-fluence red light in the phyA/phyB double mutant, revealing that another phytochrome(s) (PhyX) regulated CAB expression in a manner similar to PhyB. These data suggest that plants utilize different phytochromes to perceive light of varying wave-lengths and fluence, and begin to explain how plants respond so exquisitely to changing light in their environment.  相似文献   

18.
Summary Phytochrome photoconversions PrPfr and PfrPr can be measured by differential spectrophotometry in dry seeds (6% water content) of Pinus nigra Arn. A red light irradiation given before imbibition induces germination when the seeds are subsequently wetted and kept in darkness.In continuous darkness the phytochrome content shows a drastic increase at the beginning of moistening.The detectable pigment is entirely in the Pr form. The normal PfrPr dark reversion is observed. Pfr destruction does not take place.  相似文献   

19.
20.
The activities of several gibberellins in stimulating germination of wild-type and GA-deficient gal seeds of Arabidopsis thaliana were compared. Of the six compounds tested GA4 and GA7-isolactone had the highest activity and GA7 and GA9 the lowest; activities of GA1 and GA3 were intermediate. Combined application of pure GAs presented no indications that more than one GA receptor is involved. Four GAs were identified in extracts from wild-type and GA-insensitive gai seeds by combined gas chromatography mass spectrometry: GA1, GA3, GA4 and GA9. Effects of light and chilling on levels of GA1, GA4 and GA9 were studied using deuterated standards. Light increased both GA levels and germination in unchilled wild-type and gai seeds. As a result of irradiation GA levels in gai seeds were 7–10 times as high as in wild-type seeds. In the dark germination was 0%, in the light 14% of gai seeds and 95% of wild-type seeds germinated. A chilling pre-treatment of 7 days at 2°C was required to enhance further the germination of gai seeds in the light. Light did not increase GA levels of chilled seeds of either genotype; levels of GA4 and GA9 of chilled gai seeds, in the light were respectively 7 and 12 times lower than in non-chilled seeds, whereas the latter seeds germinated better. Slightly elevated levels of GA4 were detected in darkness after chilling, but germination capacity was still 0%. These results strengthened the conclusion that GAs are required for germination of A. thaliana seeds, whereby GA4 has intrinsic biological activity. However, it is unlikely that light and chilling stimulate germination primarily by increasing levels of GA. Instead GA sensitivity is a possible alternative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号