首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
4.
Detecting uber-operons in prokaryotic genomes   总被引:3,自引:1,他引:3       下载免费PDF全文
Che D  Li G  Mao F  Wu H  Xu Y 《Nucleic acids research》2006,34(8):2418-2427
  相似文献   

5.
Since operons are unstable across Prokaryotes, it has been suggested that perhaps they re-combine in a conservative manner. Thus, genes belonging to a given operon in one genome might re-associate in other genomes revealing functional relationships among gene products. We developed a system to build networks of functional relationships of gene products based on their organization into operons in any available genome. The operon predictions are based on inter-genic distances. Our system can use different kinds of thresholds to accept a functional relationship, either related to the prediction of operons, or to the number of non-redundant genomes that support the associations. We also work by shells, meaning that we decide on the number of linking iterations to allow for the complementation of related gene sets. The method shows high reliability benchmarked against knowledge-bases of functional interactions. We also illustrate the use of Nebulon in finding new members of regulons, and of other functional groups of genes. Operon rearrangements produce thousands of high-quality new interactions per prokaryotic genome, and thousands of confirmations per genome to other predictions, making it another important tool for the inference of functional interactions from genomic context.  相似文献   

6.
7.
8.
9.
In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H2O2 and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.  相似文献   

10.
We have combined and compared three techniques for predicting functional interactions based on comparative genomics (methods based on conserved operons, protein fusions and correlated evolution) and optimized these methods to predict coregulated sets of genes in 24 complete genomes, including Saccharomyces cerevisiae, Caernorhabditis elegans and 22 prokaryotes. The method based on conserved operons was the most useful for this purpose. Upstream regions of the genes comprising these predicted regulons were then used to search for regulatory motifs in 22 prokaryotic genomes using the motif-discovery program AlignACE. Many significant upstream motifs, including five known Escherichia coli regulatory motifs, were identified in this manner. The presence of a significant regulatory motif was used to refine the members of the predicted regulons to generate a final set of predicted regulons that share significant regulatory elements.  相似文献   

11.
12.
RyhB is a noncoding RNA regulated by the Fur repressor. It has previously been shown to cause the rapid degradation of a number of mRNAs that encode proteins that utilize iron. Here we examine the effect of ectopic RyhB production on global gene expression by microarray analysis. Many of the previously identified targets were found, as well as other mRNAs encoding iron-binding proteins, bringing the total number of regulated operons to at least 18, encoding 56 genes. The two major operons involved in Fe-S cluster assembly showed different behavior; the isc operon appears to be a direct target of RyhB action, while the suf operon does not. This is consistent with previous findings suggesting that the suf genes but not the isc genes are important for Fe-S cluster synthesis under iron-limiting conditions, presumably for essential iron-binding proteins. In addition, we observed repression of Fur-regulated genes upon RyhB expression, interpreted as due to intracellular iron sparing resulting from reduced synthesis of iron-binding proteins. Our results demonstrate the broad effects of a single noncoding RNA on iron homeostasis.  相似文献   

13.
Microarrays are widely used for gene expression profiling. In the case of prokaryotes such arrays usually provide data about composition of modulons, groups of genes whose expression is influenced by a single regulatory system or external stimulus. Unlike modulons, regulons include only genes directly controlled by regulatory systems. Here we compared the structures of the Fnr and ArcA modulons and regulons. The data about modulon composition were taken from published microarray assays, whereas regulons were characterized using comparative genomic approaches. The Fnr and ArcA regulons were shown to contain 26 and 16 operons, respectively. Ten operons had high-score and highly conserved site for both Fnr and ArcA. These genes are the "core of regulons". Remarkably, all "core genes" encode enzymes involved in aerobic respiration and central metabolism. The Fnr-ArcA regulatory cascade plays an important role in expansion of the Fnr modulon.  相似文献   

14.
15.
Prediction of operons in microbial genomes   总被引:28,自引:7,他引:21       下载免费PDF全文
  相似文献   

16.
17.
The Pseudomonas genus belongs to the γ division of Proteobacteria and many species produce the characteristic yellow–green siderophore pyoverdine, and often a second siderophore, of lower affinity for iron. These bacteria are known for their ability to colonize different ecological niches and for their versatile metabolism. It is therefore not surprising that they are endowed with the capacity to take up exogenous xenosiderophores via different TonB-dependent receptors. Uptake of iron is controlled by the central regulator Fur, and via extracytoplasmic sigma factors or other types of regulators (two-component systems, AraC regulators). In this review the Fur regulon (experimentally proven and/or predicted) of Paeruginosa will be presented. An interesting feature revealed by this analysis of Fur-regulated genes is the overlap between the iron and the sulfur regulons as well with the quorum sensing system.  相似文献   

18.
The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and ar-chaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacte-ria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variat  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号