首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biophysical properties of small conductance Ca(2+)-activated K(+) (SK) channels are well suited to underlie afterhyperpolarizations (AHPs) shaping the firing patterns of a conspicuous number of central and peripheral neurons. We have identified a new scorpion toxin (tamapin) that binds to SK channels with high affinity and inhibits SK channel-mediated currents in pyramidal neurons of the hippocampus as well as in cell lines expressing distinct SK channel subunits. This toxin distinguished between the SK channels underlying the apamin-sensitive I(AHP) and the Ca(2+)-activated K(+) channels mediating the slow I(AHP) (sI(AHP)) in hippocampal neurons. Compared with related scorpion toxins, tamapin displayed a unique, remarkable selectivity for SK2 versus SK1 ( approximately 1750-fold) and SK3 ( approximately 70-fold) channels and is the most potent SK2 channel blocker characterized so far (IC(50) for SK2 channels = 24 pm). Tamapin will facilitate the characterization of the subunit composition of native SK channels and help determine their involvement in electrical and biochemical signaling.  相似文献   

2.
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.  相似文献   

3.
Small conductance Ca2+-activated K+ (SK) channels have been cloned from mammalian brain, but little is known about the molecular characteristics of SK channels in nonexcitable tissues. Here, we report the isolation from rat liver of an isoform of SK3. The sequence of the rat liver isoform differs from rat brain SK3 in five amino acid residues in the NH3 terminus, where it more closely resembles human brain SK3. SK3 immunoreactivity was detectable in hepatocytes in rat liver and in HTC rat hepatoma cells. Human embryonic kidney (HEK-293) cells transfected with liver SK3 expressed 10 pS K+ channels that were Ca2+ dependent (EC(50) 630 nM) and were blocked by the SK channel inhibitor apamin (IC(50) 0.6 nM); whole cell SK3 currents inactivated at membrane potentials more positive than -40 mV. Notably, the Ca2+ dependence, apamin sensitivity, and voltage-dependent inactivation of SK3 are strikingly similar to the properties of hepatocellular and biliary epithelial SK channels evoked by metabolic stress. These observations raise the possibility that SK3 channels influence membrane K+ permeability in hepatobiliary cells during liver injury.  相似文献   

4.
Microglial activation following central nervous system damage or disease often culminates in a respiratory burst that is necessary for antimicrobial function, but, paradoxically, can damage bystander cells. We show that several K+ channels are expressed and play a role in the respiratory burst of cultured rat microglia. Three pharmacologically separable K+ currents had properties of Kv1.3 and the Ca2+/calmodulin-gated channels, SK2, SK3, and SK4. mRNA was detected for Kv1.3, Kv1.5, SK2, and/or SK3, and SK4. Protein was detected for Kv1.3, Kv1.5, and SK3 (selective SK2 and SK4 antibodies not available). No Kv1.5-like current was detected, and confocal immunofluorescence showed the protein to be subcellular, in contrast to the robust membrane localization of Kv1.3. To determine whether any of these channels play a role in microglial activation, a respiratory burst was stimulated with phorbol 12-myristate 13-acetate and measured using a single cell, fluorescence-based dihydrorhodamine 123 assay. The respiratory burst was markedly inhibited by blockers of SK2 (apamin) and SK4 channels (clotrimazole and charybdotoxin), and to a lesser extent, by the potent Kv1.3 blocker agitoxin-2.  相似文献   

5.
SK channels are Ca2+-activated K+ channels that underlie after hyperpolarizing (AHP) currents and contribute to the shaping of the firing patterns and regulation of Ca2+ influx in a variety of neurons. The elucidation of SK channel function has recently benefited from the discovery of SK channel enhancers, the prototype of which is 1-EBIO. 1-EBIO exerts profound effects on neuronal excitability but displays a low potency and limited selectivity. This study reports the effects of DCEBIO, an intermediate conductance Ca2+-activated K+ channel modulator, and the effects of the recently identified potent SK channel enhancer NS309 on recombinant SK2 channels, neuronal apamin-sensitive AHP currents, and the excitability of CA1 neurons. NS309 and DCEBIO increased the amplitude and duration of the apamin-sensitive afterhyperpolarizing current without affecting the slow afterhyperpolarizing current in contrast to 1-EBIO. The potentiation by DCEBIO and NS309 was reversed by SK channel blockers. In current clamp experiments, NS309 enhanced the medium afterhyperpolarization (but not the slow afterhyperpolarization sAHP) and profoundly affected excitability by facilitating spike frequency adaptation in a frequency-independent manner. The potent and specific effect of NS309 on the excitability of CA1 pyramidal neurons makes this compound an ideal tool to assess the role of SK channels as possible targets for the treatment of disorders linked to neuronal hyperexcitability.  相似文献   

6.
A series of 3-substituted analogs (3) of the parent kappa agonist, 1, were prepared to limit access to the central nervous system. With the exception of compound 3j, all other compounds bound to the human kappa opioid receptor with high affinity (K(i)=0.31-9.5 nM) and were selective for kappa over mu and delta opioid receptors. Compounds 3c, d, and 3g-i produced potent antinociceptive activity in the rat formalin assay (i.paw) and the mouse acetic acid-induced writhing assay (s.c.), with weak activity in the mouse platform sedation test. The peripheral restriction indices of 3c, d, 3g, and 3i were improved 2- to 7-fold compared to the parent compound 1, and these compounds were approximately 2- to 5-fold more potent than the peripheral kappa agonist ICI 204448.  相似文献   

7.
In the present study, 11 novel N-(3,3-diphenyl)propyl-2,2-diphenylacetamide derivatives (4a-d and 9a-g) and six triphenylacetamides (10a-c and 11a-c) were synthesized and tested as ligands of cannabinoid CB(1) and CB(2) receptors. All compounds exhibited affinity for CB(1) and CB(2) receptors. Four compounds (4b, 9a, 9b, and 11a) showed selectivity for CB(1) versus CB(2) receptors, although only the N-(3,3-diphenyl)propyl-2,2-diphenylacetamide (4b) can be considered a potent CB(1) ligand (K(i)=58 nM). It was 140-fold selective over CB(2) receptors (K(i)=7800 nM) and behaved as an inverse agonist by stimulating forskolin-induced cAMP formation in mouse N18TG2 neuroblastoma cells. This compound is the first of a novel class of tetraphenyl CB(1) ligands that, in view of its easy synthesis and high affinity for CB(1) receptors and despite its sterical hindrance, will be useful for the design of new blockers of this therapeutically exploitable receptor type.  相似文献   

8.
Auxiliary beta-subunits associated with pore-forming Slo1 alpha-subunits play an essential role in regulating functional properties of large-conductance, voltage- and Ca(2+)-activated K(+) channels commonly termed BK channels. Even though both noninactivating and inactivating BK channels are thought to be regulated by beta-subunits (beta1, beta2, beta3, or beta4), the molecular determinants underlying inactivating BK channels in native cells have not been extensively demonstrated. In this study, rbeta2 (but not rbeta3-subunit) was identified as a molecular component in rat lumbar L4-6 dorsal root ganglia (DRG) by RT-PCR responsible for inactivating large-conductance Ca(2+)-dependent K(+) currents (BK(i) currents) in small sensory neurons. The properties of native BK(i) currents obtained from both whole-cell and inside-out patches are very similar to inactivating BK channels produced by co-expressing mSlo1 alpha- and hbeta2-subunits in Xenopus oocytes. Intracellular application of 0.5 mg/ml trypsin removes inactivation of BK(i) channels, and the specific blockers of BK channels, charybdotoxin (ChTX) and iberiotoxin (IbTX), inhibit these BK(i) currents. Single BK(i) channel currents derived from inside-out patches revealed that one BK(i) channel contained three rbeta2-subunits (on average), with a single-channel conductance about 217 pS under 160 K(+) symmetrical recording conditions. Blockade of BK(i) channels by 100 nM IbTX augmented firing frequency, broadened action potential waveform and reduced after-hyperpolarization. We propose that the BK(i) channels in small diameter DRG sensory neurons might play an important role in regulating nociceptive input to the central nervous system (CNS).  相似文献   

9.
The effects of low intracellular pH (pH(i) 6.4) on cloned small-conductance Ca2+-activated K+ channel currents of all three subtypes (SK1, SK2, and SK3) were investigated in HEK293 cells using the patch-clamp technique. In 400 nM internal Ca2+ [Ca2+]i, all subtypes were inhibited by pH(i) 6.4 in the order of sensitivity: SK1>SK3>SK2. The inhibition increased with the transmembrane voltage. In saturating internal Ca2+, the inhibition was abolished for SK1-3 channels at negative potentials, indicating a [Ca2+]i-dependent mode of inhibition. Application of 50 microM 1-ethyl-2-benzimidazolone was able to potentiate SK3 current to the same extent as at neutral pH(i). We conclude that SK1-3 all are inhibited by low pH(i). We suggest two components of inhibition: a [Ca2+]i-dependent component, likely involving the SK beta-subunits calmodulin, and a voltage-dependent component, consistent with a pore-blocking effect. This pH(i)-dependent inhibition can be reversed pharmacologically.  相似文献   

10.
Structure-activity studies around the urea linkage in BMS-193885 (4a) identified the cyanoguanidine moiety as an effective urea replacement in a series of dihydropyridine NPY Y(1) receptor antagonists. In comparison to urea 4a (K(i)=3.3 nM), cyanoguanidine 20 (BMS-205749) displayed similar binding potency at the Y(1) receptor (K(i)=5.1 nM) and full functional antagonism (K(b)=2.6 nM) in SK-N-MC cells. Cyanoguanidine 20 also demonstrated improved permeability properties in Caco-2 cells in comparison to urea 4a (43 vs 19 nm/s).  相似文献   

11.
Screening of various agents resulted in the identification of 5-methyl-1,2,3,4-tetrahydro-gamma-carboline (1; K(i)=5,300 nM) as a compound with modest affinity for mouse 5-HT(5A) receptors. Structure-affinity studies were conducted resulting in 5-methyl-2-[3-(4-fluorophenoxy)propyl]-1,2,3,4-tetrahydro-gamma-carboline (17; K(i)=13 nM). Although 17 also binds at 5-HT(2) receptors, it serves as a novel lead for the further development of 5-HT(5A) ligands.  相似文献   

12.
This study examines the roles of voltage-dependent Ca(2+) channels (VDCC), ryanodine receptors (RyRs), large-conductance Ca(2+)-activated K(+) (BK) channels, and small-conductance Ca(2+)-activated K(+) (SK) channels in the regulation of phasic contractions of guinea pig urinary bladder smooth muscle (UBSM). Nisoldipine (100 nM), a dihydropyridine inhibitor of VDCC, abolished spontaneous UBSM contractions. Ryanodine (10 microM) increased contraction frequency and thereby integrated force and, in the presence of the SK blocker apamin, had a greater effect on integrated force than ryanodine alone. Blocking BK (iberiotoxin, 100 nM) or SK (apamin, 100 nM) channels increased contraction amplitude and duration but decreased frequency. The contractile response to iberiotoxin was more pronounced than to apamin. The increases in contraction amplitude and duration to apamin were substantially augmented with ryanodine pretreatment. These results indicate that BK and SK channels have prominent roles as negative feedback elements to limit UBSM contraction amplitude and duration. RyRs also appear to play a significant role as a negative feedback regulator of contraction frequency and duration, and this role is influenced by the activity of SK channels.  相似文献   

13.
Racemic exo-epiboxidine 3, endo-epiboxidine 6, and the two unsaturated epiboxidine-related derivatives 7 and 8 were efficiently prepared taking advantage of a palladium-catalyzed Stille coupling as the key step in the reaction sequence. The target compounds were assayed for their binding affinity at neuronal alpha4beta2 and alpha7 nicotinic acetylcholine receptors. Epiboxidine 3 behaved as a high affinity alpha4beta2 ligand (K(i)=0.4 nM) and, interestingly, evidenced a relevant affinity also for the alpha7 subtype (K(i)=6 nM). Derivative 7, the closest analogue of 3 in this group, bound with lower affinity at both receptor subtypes (K(i)=50 nM for alpha4beta2 and K(i)=1.6 microM for alpha7) evidenced a gain in the alpha4beta2 versus alpha7 selectivity when compared with the model compound.  相似文献   

14.
The synthesis of novel melatonin analogues 3a and 4a-c designed as melatonin receptor ligands is described. Among the newly synthesized ligands, 2-((S)-2-hydroxymethylindolin-1-ylmethyl)-melatonin 4b displayed the highest affinity for MT(1) receptors (K(i)=9.8 nM) and for MT(2) subtype (K(i)=7.8 nM), whereas the rigid pentacyclic ligand 3 showed the highest selectivity towards the MT(2) receptor subtype (K(i)=319.3 nM for MT(1) and K(i)=65.2 nM for MT(2)).  相似文献   

15.
A novel cysteine protease inhibitor (Eel-CPI-1) was isolated from the epidermis of the eel. Eel-CPI-1 was shown to bind strongly to both lactose- and carboxymethylated papain-affinity gels. Its molecular mass under reducing condition was determined to be 18 kDa by SDS-polyacrylamide gel electrophoresis but approximately 30.5 kDa under non-reducing-conditions. Eel-CPI-1 inhibited papain (K(i)=18 nM) and ficin (K(i)=120 nM) competitively. Combined with the data on amino acid and sequence analysis, Eel-CPI-1 is identical to the eel lectin, AJL-2. This is the first report describing a cysteine protease inhibitor with lectin activity.  相似文献   

16.
The compounds reported in this study are Delta(8)-THC analogues in which the C3 five-carbon linear side chain of Delta(8)-THC was replaced with aryl and 1',1'-cycloalkyl substituents. Of the compounds described here analogues 2d (CB(1), K(i)=11.7 nM. CB(2), K(i)=9.39 nM) and 2f (CB(1), K(i)=8.26 nM. CB(2), K(i)=3.86 nM) exhibited enhanced binding affinities for CB(1) and CB(2), exceeding that of Delta(8)-THC. Efficient procedures for the synthesis of these novel cannabinoid analogues are described.  相似文献   

17.
Small conductance calcium-activated potassium channels (SK) are widely expressed throughout the central nervous system (CNS) and the periphery. Three subtypes of SK channels have so far been identified in different parts of the brain. Activation of the SK channels by a rise in intracellular calcium leads to the hyperpolarisation of the membrane, reducing cell excitability. Blocking the SK channels might be beneficial in the treatment of depression, Parkinson's disease and cognitive disorders. However, few blockers of SK channels have been characterized. In this study, a pharmacophoric model of SK channels blockers is presented. It is based on a series of nonpeptidic compounds and apamin, a peptidic blocker. To create the pharmacophore model, the conformational space of nonpeptidic blockers was investigated to generate a series of distance constraints applied to a simulated annealing study of apamin. The resulting conformation was superimposed with the nonpeptidic blockers to give a pharmacophore.  相似文献   

18.
The potassium channel blocker tetraethylammonium blocks the flow-induced increase in endothelial ICAM-1. We have investigated the subtype of potassium channel that modulates flow-induced increased expression of ICAM-1 on saphenous vein endothelium. Cultured human saphenous vein endothelial cells (HSVECs) or intact saphenous veins were perfused at fixed low and high flows in a laminar shear chamber or flow rig, respectively, in the presence or absence of potassium channel blockers. Expression of K(+) channels and endothelial ICAM-1 was measured by real-time polymerase chain reaction and/or immunoassays. In HSVECs, the application of 0.8 N/m(2) (8 dyn/cm(2)) shear stress resulted in a two- to fourfold increase in cellular ICAM-1 within 6 h (P < 0.001). In intact vein a similar shear stress, with pulsatile arterial pressure, resulted in a twofold increase in endothelial ICAM-1/CD31 staining area within 1.5 h (P < 0.001). Both increases in ICAM-1 were blocked by inclusion of 100 nM apamin in the vein perfusate, whereas other K(+) channel blockers were less effective. Two subtypes of small conductance Ca(2+)-activated K(+) channel (selectively blocked by apamin) were expressed in HSVECs and vein endothelium (SK3>SK2). Apamin blocked the upregulation of ICAM-1 on saphenous vein endothelium in response to increased flow to implicate small conductance Ca(2+)-activated K(+) channels in shear stress/flow-mediated signaling pathways.  相似文献   

19.
Binding of mitogenic lectins to T lymphocytes results in elevated cytoplasmic Ca2+ concentrations ([Ca2+]i). This change in [Ca2+]i is thought to be essential for cellular proliferation. In addition, the lectins increase the conductance to K+ through voltage-sensitive channels. Based on the inhibitory effect of K+ channel blockers on lectin-induced mitogenesis, it has been suggested that Ca2+ could enter the cells through these activated K+ channels (Chandy, K. G., De Coursey, T. E., Cahalan, M. D., McLaughlin, C., and Gupta, S. (1984) J. Exp. Med. 160, 369-385; Chandy, K. G., De Coursey, T. E., Cahalan, M. D., and Gupta, S. (1985) J. Clin. Immunol. 5, 1-5). This hypothesis was tested experimentally by measuring the effect of activation or blockade of K+ channels on [Ca2+]i using quin-2 and indo-1 and by determining the effect of K+ channel blockers on lectin-induced proliferation. We found that: depolarization of the membrane, which is expected to open the K+ channels, failed to increase [Ca2+]i, K+ channel blockers such as tetraethylammonium and 4-aminopyridine had only a marginal effect on the lectin-induced increase in [Ca2+]i, and the inhibitory effect of K+ channel blockers on proliferation was found to be nonspecific, occurring also when proliferation was triggered by phorbol esters under conditions where [Ca2+]i is not elevated. It is concluded that the lectin-induced changes in [Ca2+]i are not mediated by the opening of voltage-gated K+ channels.  相似文献   

20.
The synthesis and pharmacological testing of a series of non-peptidic blockers of the SK(Ca) (SK-3) channel is described. Target compounds were designed to mimic the spatial relationships of selected key residues in the energy-minimised structure of the octadecapeptide apamin, which are a highly potent blocker of this channel. Structures consist of a central unit, either a fumaric acid or an aromatic ring, to which are attached two alkylguanidine or two to four alkylaminoquinoline substituents. Potency was tested by the ability to inhibit the SK(Ca) channel-mediated after-hyperpolarization (AHP) in cultured rat sympathetic neurones. It was found that bis-aminoquinoline derivatives are significantly more potent as channel blockers than are the corresponding guanidines. This adds to the earlier evidence that delocalisation of positive charge through the more extensive aminoquinolinium ring system is important for effective channel binding. It was also found that an increase in activity can be gained by the addition of a third aminoquinoline residue to give non-quaternized amines which have submicromolar potencies (IC(50)=0.13-0.36 microM). Extension to four aminoquinoline residues increased the potency to IC(50)=93 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号