首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A cactus, Opuntia stricta , has invaded almost 16 000 ha of conserved, natural habitatand has become a major weed problem in Kruger National Park (KNP), South Africa.
2. The main objectives in the control of O. stricta are to reduce the density of the weed and to curb long-range dispersal of seeds by preventing young plants from reaching the size (28 cladodes) at which they start to produce fruits.
3. Herbicides have failed to provide satisfactory control of O. stricta because the weed infestations are replenished from seeds in the soil and from small plants that are overlooked during spraying.
4. A phycitid moth, Cactoblastis cactorum , was released in KNP during 1988 in an attempt to control O. stricta biologically.
5. Population counts of the biological control agent and of the weed over a 5-year period showed that, even though C. cactorum has not provided complete control of O. stricta in KNP, the moderate levels of larval damage have stunted the growth of O. stricta and have considerably extended the time that the young plants take to reach sexual maturity.
6. Comparisons of modelled (i.e. with no C. cactorum ) and actual populations of O. stricta showed that C. cactorum is making a substantial contribution to the control of O. stricta in residual infestations of the weed that have been treated with herbicides.
7. The need for long-term evaluation studies in biological weed control is demon strated by the development of an integrated management programme for effective control of O. stricta .  相似文献   

2.
1. Until recently, neither the phycitid moth Cactoblastis cactorum nor the cochineal insect Dactylopius opuntiae have been satisfactory biological control agents of Opuntia stricta in South Africa.
2. In marked contrast, both of these agents have kept O. stricta under biological control for many decades in Australia.
3. In an attempt to improve the situation in South Africa, a stock of D. opuntiae was obtained from O. stricta in Australia during 1996.
4. Host-specificity tests confirmed that the newly imported D. opuntiae from Australia is a different biotype to the one already established in South Africa.
5. The Australian ('stricta') biotype thrives on O. stricta but is unable to develop satisfactorily on O. ficus-indica , while the converse is true for the South African ('ficus') biotype, which thrives on O. ficus-indica but fares poorly on O. stricta .
6. The integrity of the host-plant specificity of the two biotypes of D. opuntiae has important implications for biological control of Cactaceae in South Africa, and has greatly enhanced prospects that O. stricta can be brought under biological control successfully.  相似文献   

3.
1. This study examines the anti-herbivore effect of ants visiting the extrafloral nectaries (EFNs) of Opuntia stricta (Cactaceae) and its possible influence on the plant's reproductive output in Mexican coastal sand dunes. Opuntia 's EFNs are located in the areoles of the developing tissue of emerging cladodes and flower buds.
2. Ants visited the EFNs of O . stricta on a round-the-clock basis. The associated ant assemblage was formed by nine species distributed in four subfamilies, and the species composition of the principal ant visitors changed markedly from day to night period.
3. Cladodes of control (ants present) and treatment (ants excluded) plants of Opuntia were equally infested by sucking bugs and mining dipterans. Damage to buds by a pyralid moth, however, was significantly higher on treatment than on control plants. Ant visitation to Opuntia 's EFNs translated into a 50% increase in the plant's reproductive output, as expressed by the number of fruits produced by experimental control and treatment branches. Moreover, fruit production by ant-visited branches was positively and significantly associated with the mean monthly rate of ant visitation to EFNs.
4. This is the first demonstration of ant protection leading to increased fruit set in the Cactaceae under natural conditions. Although the consequences of damage by sucking and mining insects remain unclear for Opuntia , the results show how the association of EFNs with vulnerable reproductive plant organs can result in a direct ant-derived benefit to plant fitness.  相似文献   

4.
CO(2)-concentrating: consequences in crassulacean acid metabolism   总被引:1,自引:0,他引:1  
The consequences of CO(2)-concentrating in leaf air-spaces of CAM plants during daytime organic acid decarboxylation in Phase III of CAM (crassulacean acid metabolism) are explored. There are mechanistic consequences of internal CO(2) partial pressures, p(i)(CO(2)). These are (i) effects on stomata, i.e. high p(i)(CO(2)) eliciting stomatal closure in Phase III, (ii) regulation of malic acid remobilization from the vacuole, malate decarboxylation and refixation of CO(2) via Rubisco (ribulose bisphosphate carboxylase/oxygenase), and (iii) internal signalling functions during the transitions between Phases II and III and III and IV, respectively, in the natural day/night cycle and in synchronizing the circadian clocks of individual leaf cells or leaf patches in the free-running endogenous rhythmicity of CAM. There are ecophysiological consequences. Obvious beneficial ecophysiological consequences are (i) CO(2)-acquisition, (ii) increased water-use- efficiency, (iii) suppressed photorespiration, and (iv) reduced oxidative stress by over-energization of the photosynthetic apparatus. However, the general potency of these beneficial effects may be questioned. There are also adverse ecophysiological consequences. These are (i) energetics, (ii) pH effects and (iii) Phase III oxidative stress. A major consequence of CO(2)-concentrating in Phase III is O(2)-concentrating, increased p(i)(CO(2)) is accompanied by increased p(i)(O(2)). Do reversible shifts of C(3)/CAM-intermediate plants between the C(3)-CAM-C(3) modes of photosynthesis indicate that C(3)-photosynthesis provides better protection from irradiance stress? There are many open questions and CAM remains a curiosity.  相似文献   

5.
The capacity to induce crassulacean acid metabolism developmentally (constitutive CAM) and to up-regulate CAM expression in response to drought stress (facultative CAM) was studied in whole shoots of seven species by measuring net CO(2) gas exchange for up to 120 day-night cycles during early growth. In Clusia rosea, CAM was largely induced developmentally. Well-watered seedlings began their life cycle as C(3) plants and developed net dark CO(2) fixation indicative of CAM after the initiation of the fourth leaf pair following the cotyledons. Thereafter, CAM activity increased progressively and drought stress led to only small additional, reversible increases in dark CO(2) fixation. In contrast, CAM expression was overwhelmingly under environmental control in seedlings and mature plants of Clusia pratensis. C(3)-type CO(2) exchange was maintained under well-watered conditions, but upon drought stress, CO(2) exchange shifted, in a fully reversible manner, to a CAM-type pattern. Clusia minor showed CO(2) exchange reponses intermediate to those of C. rosea and C. pratensis. Clusia cretosa operated in the C(3) mode at all times. Notably, reversible stress-induced increases of dark CO(2) fixation were also observed during the developmental progression to pronounced CAM in young Kalancho? daigremontiana and Kalancho? pinnata, two species considered constitutive CAM species. Drought-induced up-regulation of CAM was even detected in young cladodes of a cactus, Opuntia ficus-indica, an archetypal constitutive CAM species. Evidently, the defining characteristics of constitutive and facultative CAM are shared, to variable degrees, by all CAM species.  相似文献   

6.
Immediately after unfolding, cotyledons of the tropical platyopuntoid cactus, Opuntia elatior Mill., exhibited a C(3)-type diel CO(2) exchange pattern characterized by net CO(2) uptake in the light. Significant nocturnal increases in titratable acidity typical of crassulacean acid metabolism (CAM) were not detected at this early developmental stage. As cotyledons matured and the first cladode (flattened stem) developed, features of CAM were observed and the magnitude of CAM increased. Nonetheless, in well-watered seedlings up to 10 cm tall, C(3) photosynthetic CO(2) fixation in the light remained the major pathway of carbon fixation. Reduced soil water availability led to an up-regulation of net dark CO(2) fixation and greater nocturnal increases in tissue acidity, consistent with facultative CAM. These observations demonstrate that C(3) photosynthesis, drought-stress-related facultative CAM, and developmentally controlled constitutive CAM can all contribute to the early growth of O. elatior. The strong C(3) component and facultative CAM features expressed in young O. elatior contrast with mature plants in which obligate CAM is the major pathway of carbon acquisition.  相似文献   

7.
Gert Stange 《Oecologia》1997,110(4):539-545
Sensory organs that detect CO2 are common in herbivorous moths and butterflies, but their function has been unclear until now. As the CO2 gradients in the vicinity of a host plant depend on its physiological condition, CO2 could provide a sensory cue for the suitability of the plant as a larval food source. This study investigated whether changing the atmospheric CO2 concentration affected oviposition by Cactoblastis cactorum on its host, the cactus Opuntia stricta. On host plants exposed to rapid fluctuations in CO2 concentration, the frequency of oviposition was reduced by a factor of 3.2 compared to the control. As the fluctuations mask the much smaller CO2 signals generated by the plants, this suggests that those signals constitute an important component of the host identification process. On host plants exposed to a constant background of doubled CO2, oviposition was also reduced, by a factor of 1.8. An increased background reduces host signal detectability, partially as a consequence of a general principle of sensory physiology (Weber-Fechner's law), and partially due to other factors specific to CO2-receptor neurons. Received: 4 October 1996 / Accepted: 16 January 1997  相似文献   

8.
BACKGROUND AND AIMS: Drought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents. METHODS: Rates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions. KEY RESULTS: Daily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes. CONCLUSIONS: Daughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM.  相似文献   

9.
高浓度二氧化碳对植物影响的研究进展   总被引:19,自引:0,他引:19  
工业革命后全球大气CO2浓度持续上升,不仅对全球气候的变迁产生重大影响,而且对植物的形态、水分利用、蛋白质合成、光合、抗性、生长及生物量等都有不同程度的影响。高浓度CO2促进植物根、幼苗的生长,叶片增厚,降低气孔密度、气孔导度及蒸腾速率,增加水分利用效率、作物的产量及生物量,促进乙烯生物合成,增强植物的抗氧化能力。不同光合途径(C3、C4及CAM)及不同植被类型的植物对高浓度CO2的响应不同。长期和短期的高浓度CO2处理,植物响应方式有很大的差异,如短期高CO2处理使光合能力增强,而长期处理则使光合能力下调。  相似文献   

10.
To help understand carbon balance between shoots and developing roots, 41 bare-root crassulacean acid metabolism (CAM) plants native to the Sonoran Desert were studied in a glass-panelled sealable room at day/night air temperatures of 25/15 degrees C. Net CO(2) uptake by the community of Agave schottii, Carnegia gigantea, Cylindropuntia versicolor, Ferocactus wislizenii and Opuntia engelmannii occurred 3 weeks after watering. At 4 weeks, the net CO(2) uptake rate measured for south-east-facing younger parts of the shoots averaged 1.94 micro mol m(-2) s(-1) at night, considerably higher than the community-level nocturnal net CO(2) uptake averaged over the total shoot surface, primarily reflecting the influences of surface orientation on radiation interception (predicted net CO(2) uptake is twice as high for south-east-facing surfaces compared with all compass directions). Estimated growth plus maintenance respiration of the roots averaged 0.10 micro mol m(-2) s(-1) over the 13-week period, when the community had a net carbon gain from the atmosphere of 4 mol C while the structural C incorporated into the roots was 23 mol. Thus, these five CAM species diverted all net C uptake over the 13-week period plus some existing shoot C to newly developing roots. Only after sufficient roots develop to support shoot water and nutrient requirements will the plant community have net above-ground biomass gains.  相似文献   

11.
The morphological sensillum types on the antennae of male and female Cactoblastis cactorum were visualized by scanning electron microscopy. Electrophysiological recordings were performed for the first time on single olfactory sensilla of C. cactorum. The male sensilla trichodea house a receptor cell responding to the putative pheromone component (9Z,12E)-tetradecadienyl acetate. The sensilla trichodea of the females were much shorter than those of the males and contained specialized receptor cells responding to certain terpenoids, the most frequent being the nerolidol-sensitive cell. The sensilla auricillica and sensilla basiconica of both sexes contained cells responding less specifically to terpenoid compounds as well as to green leaf volatiles. Cells of the sensilla coeloconica responded to aliphatic aldehydes and acids. Eight volatile organic compounds emitted by Opuntia stricta, a host plant of C. cactorum, were identified using gas chromatography-mass spectrometry, beta-caryophyllene being the major compound. Five compounds identified by gas chromatography in the headspace of O. stricta elicited responses in olfactory receptor cells of C. cactorum, nonanal being the most active compound and therefore a candidate attractant of C. cactorum.  相似文献   

12.
Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot biomass as a metric, longleaf pine realized the greatest and most consistent benefit from exposure to elevated CO(2). This finding suggests that the ability of longleaf pine to compete with sand post oak, a common deciduous tree competitor, and wiregrass, the dominant understory herbaceous species, in regenerating ecosystems may be significantly enhanced by rising atmospheric CO(2) concentrations.  相似文献   

13.
Studies on long-term effects of plants grown at elevated CO(2) are scarce and mechanisms of such responses are largely unknown. To gain mechanistic understanding on respiratory acclimation to elevated CO(2), the Crassulacean acid metabolism Mediterranean invasive Opuntia ficus-indica Miller was grown at various CO(2) concentrations. Respiration rates, maximum activity of cytochrome c oxidase, and active mitochondrial number consistently decreased in plants grown at elevated CO(2) during the 9 months of the study when compared to ambient plants. Plant growth at elevated CO(2) also reduced cytochrome pathway activity, but increased the activity of the alternative pathway. Despite all these effects seen in plants grown at high CO(2), the specific oxygen uptake rate per unit of active mitochondria was the same for plants grown at ambient and elevated CO(2). Although decreases in photorespiration activity have been pointed out as a factor contributing to the long-term acclimation of plant respiration to growth at elevated CO(2), the homeostatic maintenance of specific respiratory rate per unit of mitochondria in response to high CO(2) suggests that photorespiratory activity may play a small role on the long-term acclimation of respiration to elevated CO(2). However, despite growth enhancement and as a result of the inhibition in cytochrome pathway activity by elevated CO(2), total mitochondrial ATP production was decreased by plant growth at elevated CO(2) when compared to ambient-grown plants. Because plant growth at elevated CO(2) increased biomass but reduced respiratory machinery, activity, and ATP yields while maintaining O(2) consumption rates per unit of mitochondria, we suggest that acclimation to elevated CO(2) results from physiological adjustment of respiration to tissue ATP demand, which may not be entirely driven by nitrogen metabolism as previously suggested.  相似文献   

14.
H. G. Robertson 《Oecologia》1987,73(4):601-608
Summary Oviposition by Cactoblastis cactorum on Opuntia ficus-indica and O. aurantiaca was assessed from the positioning of egg sticks on plants in the field. The number of egg sticks laid on O. ficus-indica plants was affected by: (1) plant size; (2) moth emergence near the plant; (3) cladode condition; and (4) plant conspicuousness. These factors contributed towards the clumping of egg sticks on plants. There was no apparent oviposition preference for one of the two host plant species despite the fact that egg predation was higher and fecundity lower on O. aurantiaca. The selection of a site for oviposition on the host plants was influenced by: (1) cladode condition; (2) height above ground; and (3) shelter from wind during oviposition. Succulent cladodes were the favoured sites for oviposition. The evidence suggests that in C. cactorum, oviposition site selection is largely the net result of a compromise between oviposition behaviour selected for increasing the probability of juvenile survival and oviposition behaviour selected for increasing the probability of laying the full complement of eggs. In addition, environmental and physiological factors such as wind and wing-loading, are thought to place constraints on the range of sites available for oviposition.  相似文献   

15.
 为了探讨大气CO2浓度升高对水华藻类的影响,利用水华鱼腥藻(Anabena flos_aquae)作为实验材料,研究了大气CO2浓度加倍对其生长和光合作用的影响,结果显示大气CO2浓度升高导致水华鱼腥藻的生物量、光饱和光合速率、光合效率和光系统II的光化学效率(Fv/Fm)明显提高,但对暗呼吸速率和光饱和点没有明显影响。CO2加倍条件下藻细胞光合作用对无机碳的亲和力降低,表明其利用HCO-3的能力受到抑制。  相似文献   

16.
CAM photosynthesis in submerged aquatic plants   总被引:1,自引:0,他引:1  
Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism selected in response to aridity in terrestrial habitats, and, in aquatic environments, to ambient limitations of carbon. Evidence is reviewed for its presence in five genera of aquatic vascular plants, includingIsoëtes, Sagittaria, Vallisneria, Crassula, andLittorella. Initially, aquatic CAM was considered by some to be an oxymoron, but some aquatic species have been studied in sufficient detail to say definitively that they possess CAM photosynthesis. CO2-concentrating mechanisms in photosynthetic organs require a barrier to leakage; e.g., terrestrial C4 plants have suberized bundle sheath cells and terrestrial CAM plants high stomatal resistance. In aquatic CAM plants the primary barrier to CO2 leakage is the extremely high difrusional resistance of water. This, coupled with the sink provided by extensive intercellular gas space, generates daytime CO2(pi) comparable to terrestrial CAM plants. CAM contributes to the carbon budget by both net carbon gain and carbon recycling, and the magnitude of each is environmentally influenced. Aquatic CAM plants inhabit sites where photosynthesis is potentially limited by carbon. Many occupy moderately fertile shallow temporary pools that experience extreme diel fluctuations in carbon availability. CAM plants are able to take advantage of elevated nighttime CO2 levels in these habitats. This gives them a competitive advantage over non-CAM species that are carbon starved during the day and an advantage over species that expend energy in membrane transport of bicarbonate. Some aquatic CAM plants are distributed in highly infertile lakes, where extreme carbon limitation and light are important selective factors. Compilation of reports on diel changes in titratable acidity and malate show 69 out of 180 species have significant overnight accumulation, although evidence is presented discounting CAM in some. It is concluded that similar proportions of the aquatic and terrestrial floras have evolved CAM photosynthesis. AquaticIsoëtes (Lycophyta) represent the oldest lineage of CAM plants and cladistic analysis supports an origin for CAM in seasonal wetlands, from which it has radiated into oligotrophic lakes and into terrestrial habitats. Temperate Zone terrestrial species share many characteristics with amphibious ancestors, which in their temporary terrestrial stage, produce functional stomata and switch from CAM to C3. Many lacustrineIsoëtes have retained the phenotypic plasticity of amphibious species and can adapt to an aerial environment by development of stomata and switching to C3. However, in some neotropical alpine species, adaptations to the lacustrine environment are genetically fixed and these constitutive species fail to produce stomata or loose CAM when artificially maintained in an aerial environment. It is hypothesized that neotropical lacustrine species may be more ancient in origin and have given rise to terrestrial species, which have retained most of the characteristics of their aquatic ancestry, including astomatous leaves, CAM and sediment-based carbon nutrition.  相似文献   

17.
大气一氧化碳浓度升高对植物生长的影响   总被引:20,自引:2,他引:18  
大气CO2浓度同对植物生长有促进作用,对C3植物生长的促进作用最大。短期CO2浓度升高时,植物光和速率增加;在长期CO2浓度升高条件下,植物光鸽上降并发生光合适应现象。这可能是植物在长期CO2浓度升高条件下植物源库关系不平衡引起的反馈抑制作用以及营养吸收不能满足光合速率增加的需要所引起Rubiseo活必和含量下降。在CO2浓度升高条件下植物的呼吸也会发生变化,根的分枝和数量增多,根系的分泌量和吸收  相似文献   

18.
Abstract. The cactus moth, Cactoblastis cactorum (Berg) (Phycitidae) is native to South America. It was released as a biological control agent against alien Opuntia- cacti in Australia in the 1920s, then in southern Africa, and latterly on several islands, including those in the Caribbean. In 1989, the cactus moth was discovered in Florida, in the United States of America, where it is now threatening the survival of indigenous Opuntia species. In this paper we identify some of the attributes that have contributed to the success of C. cactorum as a weed biological control agent. Many of these same qualities account for the problems that C. cactorum has caused in Florida and predispose it as a major threat to the speciose, native Opuntia- floras of Central and North America. An estimated 79 platyopuntia (prickly pear) species are at risk: 51 species endemic to Mexico; nine species endemic to the United States; and 19 species common to both countries. Many cultivated and wild Opuntia species, that are used in various ways, are also vulnerable to attack by C. cactorum , including at least 25 species in Mexico and three species in the United States, particularly the widely exploited and culturally important cultivars of O. ficus-indica . Some control strategies are suggested that may minimize the risk and consequences of invasion by the cactus moth. The wider implications of this threat to the practice of weed biological control and to conservation are discussed.  相似文献   

19.
? Underwater photosynthesis by aquatic plants is often limited by low availability of CO(2), and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. ? Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO(2) and O(2) concentrations. ? CAM activity was indicated by 9.7-fold higher leaf malate at dawn, compared with at dusk, and also by changes in the titratable acidity (μmol H(+) equivalents) of leaves. Leaves high in malate showed not only higher underwater net photosynthesis at low external CO(2) concentrations but also lower apparent photorespiration. Suppression by CAM of apparent photorespiration was evident at a range of O(2) concentrations, including values below air equilibrium. At a high O(2) concentration of 2.2-fold the atmospheric equilibrium concentration, net photosynthesis was reduced substantially and, although it remained positive in leaves containing high malate concentrations, it became negative in those low in malate. ? CAM in aquatic plants enables higher rates of underwater net photosynthesis over large O(2) and CO(2) concentration ranges in floodwaters, via increased CO(2) fixation and suppression of photorespiration.  相似文献   

20.
Cactoblastis cactorum Berg (Lepidoptera: Pyralidae), the cactus moth, is a well-known biological control agent of prickly pear cactus (Cactaceae: Opuntia Miller). The arrival of the moth in Florida and its subsequent spread through the southeastern United States poses a threat to opuntioid diversity in North America. Of particular concern are the ecological and economic impacts the moth could have in the southwestern United States and Mexico, where both native and cultivated Opuntia species are important resources. It is unknown which species would best support larval development if the moth were to spread further westward in North America. This study aimed to determine if ovipositing females demonstrate preferences for any of 14 common opuntioids native to or naturalized in Mexico and the southwestern United States; which of these opuntioids best support larval development; and if oviposition preference correlates with larval performance, as predicted by simple adaptive models. Results from a field experiment showed that female moths preferred O. engelmannii Salm-Dyck ex Engelmann variety linguiformis (Griffiths) Parfitt and Pinkava and O. engelmannii variety engelmannii for oviposition. A generalized linear model showed number of cladodes and degree of spininess to be significant predictors of oviposition activity. Results from a no-choice larval survival experiment showed Consolea rubescens (Salm-Dyck ex de Candolle.) Lemaire and O. streptacantha Lemaire to be the best hosts. Epidermal toughness was a significant predictor of most larval fitness parameters. In general, oviposition preference was not correlated with larval performance. A lack of co-evolutionary history between C. cactorum and North American opuntioid species may help explain this disconnect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号