首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general methodology for constructing, inoculating, operating, and monitoring a CSAD system for the purpose of testing the suitability of a given organic substrate for long-term anaerobic digestion. The construction section of this article will cover building the lab-scale reactor system. The inoculation section will explain how to create an anaerobic environment suitable for seeding with an active methanogenic inoculum. The operating section will cover operation, maintenance, and troubleshooting. The monitoring section will introduce testing protocols using standard analyses. The use of these measures is necessary for reliable experimental assessments of substrate suitability for AD. This protocol should provide greater protection against a common mistake made in AD studies, which is to conclude that reactor failure was caused by the substrate in use, when really it was improper user operation.  相似文献   

2.
Cytochrome P450BM3 has long been regarded as a promising candidate for use as a biocatalyst, owing to its excellent efficiency for the hydroxylation of unactivated C–H bonds. However, because of its high substrate specificity, its possible applications have been severely limited. Consequently, various approaches have been proposed to overcome the enzyme's natural limitations, thereby expanding its substrate scope to encompass non-native substrates, evoking chemoselectivity, regioselectivity and stereoselectivity and enabling previously inaccessible chemical conversions. Herein, these approaches will be classified into three categories: (1) mutagenesis including directed evolution, (2) haem substitution with artificial cofactors and (3) use of substrate mimics, ‘decoy molecules’. Herein, we highlight the representative work that has been conducted in above three categories for discussion of the future outlook of P450BM3 in green chemistry.  相似文献   

3.
A population dynamical model describing growth of bacteria on two substrates is analyzed. The model assumes that bacteria choose substrates in order to maximize their per capita population growth rate. For batch bacterial growth, the model predicts that as the concentration of the preferred substrate decreases there will be a time at which both substrates provide bacteria with the same fitness and both substrates will be used simultaneously thereafter. Preferences for either substrate are computed as a function of substrate concentrations. The predicted time of switching is calculated for some experimental data given in the literature and it is shown that the fit between predicted and observed values is good. For bacterial growth in the chemostat, the model predicts that at low dilution rates bacteria should feed on both substrates while at higher dilution rates bacteria should feed on the preferred substrate only. Adaptive use of substrates permits bacteria to survive in the chemostat at higher dilution rates when compared with non-adaptive bacteria.  相似文献   

4.
Reuse of waste materials as growing media for ornamental plants   总被引:10,自引:0,他引:10  
The use of different waste materials: pine bark, coconut fibre and sewage sludge as substrates in the production of ornamental plants was studied, with an special interest on the suitability of coconut fibre as growing substrate for conifer plants. The plant species tested were Pinus pinea, Cupressus arizonica and C. sempervirens and the substrate mixtures were: (1) pine bark, (2) pine bark with 15% of sewage sludge compost, (3) pine bark with 30% of sewage sludge compost, (4) coconut fibre, (5) coconut fibre with 15% of sewage sludge compost and (6) coconut fibre with 30% of sewage sludge compost. Substrates were physically and chemically well characterized, and 75-cm plants were grown on them for one year. Plant and substrate status were periodically tested along the experiment. As biosolid recycling is the main objective of the present work, the mixtures with 30% of composted sewage sludge will be the most convenient substrate to use. For C. sempervirens and C. arizonica, a mixture between pine bark or coconut fibre and 30% of biosolid compost in volume gave the best results, but the lower cost of the pine bark than the coconut fibre substrate indicated the use of the PB+30% CSS. For P. pinea the research of new combinations between waste products is recommended to attain better results.  相似文献   

5.
SspB homodimers deliver ssrA-tagged substrates to ClpXP for degradation. SspB consists of a substrate binding domain and an unstructured tail with a ClpX binding module (XB). Using computational design, we engineered an SspB heterodimer whose subunits did not form homodimers. Experiments with the designed molecule and variants lacking one or two tails demonstrate that both XB modules are required for strong binding and efficient substrate delivery to ClpXP. Assembly of stable SspB-substrate-ClpX delivery complexes requires the coupling of weak tethering interactions between ClpX and the SspB XB modules as well as interactions between ClpX and the substrate degradation tag. The ClpX hexamer contains three XB binding sites, one per N domain dimer, and thus binds strongly to just one SspB dimer at a time. Because different adaptor proteins use the same tethering sites in ClpX, those which employ bivalent tethering, like SspB, will compete more effectively for substrate delivery to ClpXP.  相似文献   

6.
J H Weis  A J Faras 《Biochemistry》1983,22(1):165-170
The two major phosvitin-utilizing kinases have been purified from virions of the Prague C strain of Rous sarcoma virus by the use of ion-exchange and affinity chromatography. The two kinases isolated may be differentiated by their molecular weights as well as by their ability to utilize GTP as a phosphate donor. Protein kinase G, which will use either GTP or ATP as a phosphate donor, has a molecular weight of 120 000 as determined under nondenaturing conditions by glycerol gradient centrifugation and 28 000 when assayed under denaturation in sodium dodecyl sulfate (Na-DodSO4)-polyacrylamide gels. Protein kinase A, which will only efficiently use ATP as the phosphate donor, has an apparent molecular weight of 43 000 estimated by glycerol gradient sedimentation and 40 000 by NaDodSO4-polyacrylamide electrophoresis. Both kinases possess the ability to autophosphorylate. Phosvitin is the major, and casein the minor, phosphate-accepting substrate for both kinases in vitro; however, kinase G will also phosphorylate histones to an extent similar to that observed with casein.  相似文献   

7.
Modern aspects of mushroom culture technology   总被引:5,自引:0,他引:5  
The production and culture of new species of mushrooms is increasing. The breeding of new strains has significantly improved, allowing the use of strains with high yield and resistance to diseases, increasing productivity and diminishing the use of chemicals for pest control. The improvement and development of modern technologies, such as computerized control, automated mushroom harvesting, preparation of compost, production of mushrooms in a non-composted substrate, and new methods of substrate sterilization and spawn preparation, will increase the productivity of mushroom culture. All these aspects are crucial for the production of mushrooms with better flavor, appearance, texture, nutritional qualities, and medicinal properties at low cost. Mushroom culture is a biotechnological process that recycles ligninocellulosic wastes, since mushrooms are food for human consumption and the spent substrate can be used in different ways.  相似文献   

8.
The role of biodiversity in mediating ecosystem processes has been the subject of focused theoretical and empirical attention since the mid-1990s. Theory predicts that the balance between species richness and identity effects will critically depend on the degree of environmental heterogeneity, which dictates the extent to which differences between species in patterns of resource use can be expressed. We conducted a mesocosm experiment to explicitly test this hypothesis. We manipulated the richness and identity of intertidal molluscan grazers, as well as the spatial heterogeneity of the substrate upon which they grazed. The magnitude of algal consumption was used as our focal ecosystem process. The grazer treatments consisted of three monocultures and a single polyculture including all three species; heterogeneity was represented as the proportion of topographically complex and flat substrate. Species identity had strong effects on homogeneous substrates, with the identity of the best-performing species dependent on the substrate. On the heterogeneous substrate, suitable conditions for all three species were represented, allowing the expression of spatial complementarity of resource use and the enhancement of total algal consumption. Our findings provide the first explicit experimental evidence that spatial heterogeneity of the physical environment can play a key role in mediating effects of species diversity.  相似文献   

9.
Cell therapy, i.e., the use of cells to repair an affected tissue or organ, is at the forefront of regenerative and personalized medicine. Among the multiple cell types that have been used for this purpose [including adult stem cells such as mesenchymal stem cells or pluripotent stem cells], urine-derived stem cells (USCs) have aroused interest in the past years. USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation. Importantly, they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure, which is broadly applicable, whereas most adult stem cell types require invasive procedure. Moreover, USCs can be differentiated into renal cell types. This is of high interest for renal cell therapy-based regenerative approaches. This review will firstly describe the isolation and characterization of USCs. We will specifically present USC phenotype, which is not an object of consensus in the literature, as well as detail their differentiation capacity. In the second part of this review, we will present and discuss the main applications of USCs. These include use as a substrate to generate human induced pluripotent stem cells, but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system. Importantly, we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes, which is a strategy being increasingly employed. In the last section, we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine.  相似文献   

10.
11.
Knight JD  Qian B  Baker D  Kothary R 《PloS one》2007,2(10):e982
The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.  相似文献   

12.
The use of phosphorylation state-specific antibodies has revolutionized the field of cellular signaling by Ser/Thr protein kinases. A more recent application of this technology is the development of phospho-specific antibodies that specifically recognize the consensus substrate phosphorylated motif of a given protein kinase. Here, we describe the development and use of such an antibody which is directed against the optimal phosphorylation motif of protein kinase D (PKD). A degenerate phosphopeptide library with fixed residues corresponding to the consensus LXR(Q/K/E/M)(M/L/K/E/Q/A)S*XXXX was used as an antigen to generate an antibody that recognizes this motif. We characterized the antibody by enzyme-linked immunosorbent assay and with immobilized peptide arrays and also detected immunoreactive phosphoproteins in HeLa cells stimulated with agonists known to activate PKD. Silencing PKD expression using RNA interference validated the specificity of this antibody immunoreactive against putative substrates. The antibody also detected the PKD substrates RIN1 and HDAC5. Knowledge of the PKD consensus motif also enabled us to identify Ser(82) in the human heat shock protein Hsp27 as a novel substrate for PKD. We term this antibody anti-PKD pMOTIF and predict that it will enable the discovery of novel PKD substrate proteins in cells.  相似文献   

13.
The reactor choice is crucial when designing a process where inactivation of the biocatalyst is a problem. The main bottleneck for the chemo-enzymatic epoxidation has been found to be enzyme inactivation by the hydrogen peroxide, H(2) O(2) , substrate. In the work reported here, the effect of reaction parameters on the reaction performance have been investigated and used to establish suitable operating strategies to minimize the inactivation of the enzyme, using rapeseed methyl ester (RME) as a substrate in a solvent-free system. The use of a controlled fed-batch reactor for maintaining H(2) O(2) concentration at 1.5 M resulted in increased productivity, up to 76 grams of product per gram of biocatalyst with higher retention of enzyme activity. Further investigation included a multistage design that separated the enzymatic reaction and the saturation of the RME substrate with H(2) O(2) into different vessels. This setup showed that the reaction rate as well as enzyme inactivation is strongly dependent on the H(2) O(2) concentration. A 20-fold improvement in enzymatic efficiency is required for reaching an economically feasible process. This will require a combination of enzyme modification and careful process design.  相似文献   

14.
This paper deals with a theoretical study on the dynamic, character of the chemostat system. It. is primarily based on the Monod model for growth limitation, although certain more complex models are considered. Since the Monod model is described in terms of two variables, an analysis by use of a phase plane plot will show the various possible types of behavior theoretically expected for transient conditions of the system. In this paper it will be shown that the chemostat system might show an overshoot (or an underswing) with respect to changes in cell and substrate concentrations, depending on the extent to which the system might be disturbed from steady-slate conditions. Other types of transient behavior ran also be expected when one of the system parameters such as dilution rate or input substrate concentration is disturbed in a stepwise manner. The simple Monod chemostat model was found never to oscillate in either a damped or a sustained manner as has been experimentally reported. Discussion is included about the transient behavior of other chemostat models such as that involving a variable yield coefficient, i.e., including the effect of cell maintenance requirements.  相似文献   

15.
Agrobacterium tumefaciens B6 and ATCC 15955 were grown under octopine or glutamate limitation in chemostats. Examination of the maximum specific growth rate (mu max) and substrate affinity (KS) for each strain indicated that strain B6 was highly inefficient in its use of octopine as either a nitrogen or carbon source compared with strain ATCC 15955. Examination of the yield coefficients showed that in both strains octopine was used more efficiently as a nitrogen source than as a carbon source. The data permitted predictions to be made concerning the outcome of competition for a single limiting substrate. Under octopine limitation, strain ATCC 15955 should dominate; under glutamate limitation, strain B6 should dominate. The results of an observed competition with glutamate as the limiting substrate confirmed the latter prediction, although B6 did dominate at a rate faster than was predicted from simple competition theory. B6 displayed higher growth rates and substrate affinities than ATCC 15955 on all concentrations of glutamate. The yield of B6 on octopine was also considerably higher. This latter attribute could provide an ecological advantage to B6 because of the importance of yield in the fate of competitions under multisubstrate regimens. These will be the most prevalent regimens in the area around the tumor (tumorosphere) or the rhizosphere. The increased performance on glutamate could provide an advantage in an opine-free environment when B6 is growing as a saprophyte.  相似文献   

16.
A colorimetric assay for alpha-hydroxynitrile lyase   总被引:2,自引:0,他引:2  
A colorimetric assay for alpha-hydroxynitrile lyase which utilizes acetone cyanohydrin as a substrate is described. The assay is based on measurement of the HCN formed when the lyase catalyzes the dissociation of acetone cyanohydrin. The procedure was devised for use with the optically inactive acetone cyanohydrin but will be applicable to enzymes utilizing other cyanohydrins.  相似文献   

17.
C R Bell 《Applied microbiology》1990,56(6):1775-1781
Agrobacterium tumefaciens B6 and ATCC 15955 were grown under octopine or glutamate limitation in chemostats. Examination of the maximum specific growth rate (mu max) and substrate affinity (KS) for each strain indicated that strain B6 was highly inefficient in its use of octopine as either a nitrogen or carbon source compared with strain ATCC 15955. Examination of the yield coefficients showed that in both strains octopine was used more efficiently as a nitrogen source than as a carbon source. The data permitted predictions to be made concerning the outcome of competition for a single limiting substrate. Under octopine limitation, strain ATCC 15955 should dominate; under glutamate limitation, strain B6 should dominate. The results of an observed competition with glutamate as the limiting substrate confirmed the latter prediction, although B6 did dominate at a rate faster than was predicted from simple competition theory. B6 displayed higher growth rates and substrate affinities than ATCC 15955 on all concentrations of glutamate. The yield of B6 on octopine was also considerably higher. This latter attribute could provide an ecological advantage to B6 because of the importance of yield in the fate of competitions under multisubstrate regimens. These will be the most prevalent regimens in the area around the tumor (tumorosphere) or the rhizosphere. The increased performance on glutamate could provide an advantage in an opine-free environment when B6 is growing as a saprophyte.  相似文献   

18.
Mechanical cues like the rigidity of the substrate are main determinants for the decision-making of adherent cells. Here we use a mechano-chemical model to predict the cellular response to varying substrate stiffnesses. The model equations combine the mechanics of contractile actin filament bundles with a model for the Rho-signaling pathway triggered by forces at cell-matrix contacts. A bifurcation analysis of cellular contractility as a function of substrate stiffness reveals a bistable response, thus defining a lower threshold of stiffness, below which cells are not able to build up contractile forces, and an upper threshold of stiffness, above which cells are always in a strongly contracted state. Using the full dynamical model, we predict that rate-dependent hysteresis will occur in the cellular traction forces when cells are exposed to substrates of time-dependent stiffness.  相似文献   

19.
A great variety of biological reactions that are physiologically important are catalyzed by enzymes. Understanding the reaction course of these enzyme-catalyzed transformations are of significant importance since the insights gained from these experiments may facilitate the design of methods to control or mimic their actions. A common strategy to study enzyme catalyses is to use fluorinated substrate analogues as mechanistic probes, since fluorine is an effective hydroxyl group mimic and can also be used to replace a hydrogen atom. Using fluorinated substrate probes have enabled researchers to obtain crucial information regarding the catalytic mechanism of enzymatic reactions. Many of these compounds are good enzyme inhibitors and have been developed into clinically useful chemotherapeutic agents. This review will discuss some examples of the use of fluorine containing compounds as mechanistic probes/enzyme inhibitors, many of which are selected from our own work.  相似文献   

20.
Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid β-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid β-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号