首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Abcb11 encodes for the liver bile salt export pump, which is rate-limiting for hepatobiliary bile salt secretion. We employed transthyretin-Abcb11 and BAC-Abcb11 transgenes to develop mice overexpressing the bile salt export pump in the liver. The mice manifest increases in bile flow and biliary secretion of bile salts, phosphatidylcholine, and cholesterol. Hepatic gene expression of cholesterol 7alpha-hydroxylase and ileal expression of the apical sodium bile salt transporter are markedly reduced, whereas gene expression of targets of the nuclear bile salt receptor FXR (ileal lipid-binding protein, short heterodimer partner (SHP) is increased. Because these changes in gene expression are associated with an increased overall hydrophobicity of the bile salt pool and a 4-fold increase of the FXR ligand taurodeoxycholate, they reflect bile salt-mediated regulation of FXR and SHP target genes. Despite the increased biliary secretion of bile salts, fecal bile salt excretion is unchanged, suggestive of an enhanced enterohepatic cycling of bile salts. Abcb11 transgenic mice fed a lithogenic (high cholesterol/fat/cholic acid) diet display markedly reduced hepatic steatosis compared with wild-type controls. We conclude that mice overexpressing Abcb11 display an increase in biliary bile salt secretion and taurodeoxycholate content, which is associated with FXR/SHP-mediated changes in hepatic and ileal gene expression. Because these mice are resistant to hepatic lipid accumulation, regulation of Abcb11 may be important for the pathogenesis and treatment of steatohepatitis.  相似文献   

2.
Interaction of unconjugated and taurine-conjugated NBD-amino-dihydroxy-5 beta-cholan-24-oic acids bearing the fluorophor in the 3 alpha, 3 beta, 7 alpha, 7 beta, 12 alpha, or 12 beta position with albumin results in a small hypsochromic shift of the emission maximum and an increase in quantum yield, suggesting binding by hydrophobic interactions. The different unconjugated fluorescent bile salt derivatives are metabolized by intact rat liver in different ways. The unconjugated 3 beta-NBD-amino derivative is completely transformed to its taurine conjugate and secreted as such, whereas the 3 alpha-NBD-amino derivative is completely transformed to a polar fluorescent compound not identical with its taurine conjugate. The unconjugated 7 alpha- and 7 beta-NBD-amino derivatives are only partially conjugated with taurine and mainly secreted in unmetabolized form. The unconjugated 12 alpha- and 12 beta-NBD-amino derivatives are not at all transformed to their taurine conjugates, but are partially metabolized to unidentified compounds. They are predominantly secreted as the unmetabolized compounds. In contrast to the unconjugated derivatives, all taurine-conjugated fluorescent bile salt derivatives are secreted into bile unmetabolized. With the exception of the 3 alpha-compound, all synthesized taurine-conjugated fluorescent derivatives interfere with the secretion of cholyltaurine. Differential photoaffinity labeling studies using (7,7-azo-3 alpha,12 alpha- dihydroxy-5 beta-cholan-24-oyl)-2'-[2'-3H(N)]aminoethanesulfonate as a photolabile derivative revealed that in liver cells all fluorescent bile salt derivatives interact with the same polypeptides as the physiological bile salts. The hepatobiliary transport of taurine-conjugated NBD-amino bile salt derivatives is, due to hydrophobic interactions, accompanied by an increase in fluorescence intensity which is favorable for the study of biological bile salt transport by fluorescence microscopy.  相似文献   

3.
The cause of Cystic fibrosis liver disease (CFLD), is unknown. It is well recognized that hepatic exposure to hydrophobic bile salts is associated with the development of liver disease. For this reason, we hypothesize that, CFTR dependent variations, in the hepatic handling of hydrophobic bile salts, are related to the development CFLD. To test our hypothesis we studied, in Cftr-/- and control mice, bile production, bile composition and liver pathology, in normal feeding condition and during cholate exposure, either acute (intravenous) or chronic (three weeks via the diet). In Cftr-/- and control mice the basal bile production was comparable. Intravenous taurocholate increased bile production to the same extent in Cftr-/- and control mice. However, chronic cholate exposure increased the bile flow significantly less in Cftr-/- mice than in controls, together with significantly higher biliary bile salt concentration in Cftr-/- mice. Prolonged cholate exposure, however, did not induce CFLD like pathology in Cftr-/- mice. Chronic cholate exposure did induce a significant increase in liver mass in controls that was absent in Cftr-/- mice. Chronic cholate administration induces a cystic fibrosis-specific hepatobiliary phenotype, including changes in bile composition. These changes could not be associated with CFLD like pathological changes in CF mouse livers. However, chronic cholate administration induces liver growth in controls that is absent in Cftr-/- mice. Our findings point to an impaired adaptive homeotrophic liver response to prolonged hydrophobic bile salt exposure in CF conditions.  相似文献   

4.
We recently reported that bile salts play a role in the regulation of mucin secretion by cultured dog gallbladder epithelial cells. In this study we have examined whether bile salts also influence mucin secretion by the human epithelial colon cell line LS174T. Solutions of bile salts were applied to monolayers of LS174T cells. Mucin secretion was quantified by measuring the secretion of [3H]GlcNAc labeled glycoproteins. Both unconjugated bile salts as well as taurine conjugated bile salts stimulated mucin secretion by the colon cells in a dose-dependent fashion. Hydrophobic bile salts were more potent stimulators than hydrophilic bile salts. Free (unconjugated) bile salts were more stimulatory compared with their taurine conjugated counterparts. Stimulation of mucin secretion by LS174T cells was found to occur at much lower bile salt concentrations than in the experiments with the dog gallbladder epithelial cells. The protein kinase C activators PMA and PDB had no stimulatory effect on mucin secretion. We conclude that mucin secretion by the human colon epithelial cell line LS174T is regulated by bile salts. We suggest that regulation of mucin secretion by bile salts might be a common mechanism, by which different epithelia protect themselves against the detergent action of bile salts, to which they are exposed throughout the gastrointestinal tract.   相似文献   

5.
6.
The inbred C57L strain but not the AKR strain of mice carry Lith genes that determine cholesterol gallstone susceptibility. When C57L mice are fed a lithogenic diet containing 15% fat, 1% cholesterol, and 0.5% cholic acid, gallbladder bile displays rapid cholesterol supersaturation, mucin gel accumulation, increases in hydrophobic bile salts, and rapid phase separation of solid and liquid crystals, all of which contribute to the high cholesterol gallstone prevalence rates (D. Q-H. Wang, B. Paigen, and M. C. Carey. J. Lipid Res. 1997. 38: 1395;-1411). We have now determined the hepatic secretion rates of biliary lipids in fasting male and female C57L and AKR mice and the intercross (C57L x AKR)F(1) before and at frequent intervals during feeding the lithogenic diet for 56 days. Bile flow and biliary lipid secretion rates were measured in the first hour of an acute bile fistula and circulating bile salt pool sizes were determined by the "washout" technique after cholecystectomy. Compared with AKR mice, we found that i) C57L and F(1) mice on chow displayed significantly higher secretion rates of all biliary lipids, and larger bile salt pool sizes, as well as higher bile salt-dependent and bile salt-independent flow rates; ii) the lithogenic diet further increased biliary cholesterol and lecithin outputs, but bile salt outputs remained constant. Biliary coupling of cholesterol to lecithin increased approximately 30%, setting the biophysical conditions necessary for cholesterol phase separation in the gallbladder; and iii) no gender differences in lipid secretion rates were noted but male mice exhibited significantly more hydrophobic bile salt pools than females.We conclude that in gallstone-susceptible mice, Lith genes determine increased outputs of all biliary lipids but promote cholesterol hypersecretion disproportionately to lecithin and bile salt outputs thereby inducing lithogenic bile formation.  相似文献   

7.
F(+) strains of Escherichia coli infected with donor-specific bacteriophage such as M13 are sensitive to bile salts. We show here that this sensitivity has two components. The first derives from secretion of bacteriophage particles through the cell envelope, but the second can be attributed to expression of the F genes required for the formation of conjugative (F) pili. The latter component was manifested as reduced or no growth of an F(+) strain in liquid medium containing bile salts at concentrations that had little or no effect on the isogenic F(-) strain or as a reduced plating efficiency of the F(+) strain on solid media; at 2% bile salts, plating efficiency was reduced 10(4)-fold. Strains with F or F-like R factors were consistently more sensitive to bile salts than isogenic, plasmid-free strains, but the quantitative effect of bile salts depended on both the plasmid and the strain. Sensitivity also depended on the bile salt, with conjugated bile salts (glycocholate and taurocholate) being less active than unconjugated bile salts (deoxycholate and cholate). F(+) cells were also more sensitive to sodium dodecyl sulfate than otherwise isogenic F(-) cells, suggesting a selectivity for amphipathic anions. A mutation in any but one F tra gene required for the assembly of F pili, including the traA gene encoding F pilin, substantially restored bile salt resistance, suggesting that bile salt sensitivity requires an active system for F pilin secretion. The exception was traW. A traW mutant was 100-fold more sensitive to cholate than the tra(+) strain but only marginally more sensitive to taurocholate or glycocholate. Bile salt sensitivity could not be attributed to a generalized change in the surface permeability of F(+) cells, as judged by the effects of hydrophilic and hydrophobic antibiotics and by leakage of periplasmic beta-lactamase into the medium.  相似文献   

8.
This paper describes the derivation of a bile salt monomeric hydrophobicity index that quantitatively defines the composite hydrophilic-hydrophobic balance of a mixture of bile salts. The index is based on the logarithms of bile salt capacity factors determined using reversed phase high performance liquid chromatography (HPLC) (stationary phase octadecyl silane; mobile phase methanol-water 70:30 w/w, ionic strength 0.15). It has been standardized arbitrarily to set indices of taurocholate and taurolithocholate to 0 and 1, respectively. Indices of tauroursodeoxycholate, taurohyodeoxycholate, taurochenodeoxycholate, and taurodeoxycholate were found to be -0.47, -0.35, +0.46, and +0.59, respectively. Whereas capacity factors and hydrophobicity indices of taurine-conjugated bile salts were constant for pH 2.8-9.0, the hydrophilic-hydrophobic balance of glycine-conjugated and unconjugated bile salts was strongly influenced by pH. At alkaline pH (greater than 8.5), hydrophobicity indices of fully ionized unconjugated (n = 4) and glycine-conjugated (n = 6) bile salts differed by only 0.14 +/- 0.02 and 0.05 +/- 0.01, respectively, from those of the corresponding taurine conjugates. At acid pH (less than 3.5) the hydrophobicity indices of four unconjugated bile acids (protonated form) exceeded those of the corresponding salts (ionized form) by 0.76 +/- 0.04; indices of six glycine-conjugated bile acids exceeded those of the corresponding salts by only 0.26 +/- 0.03. Capacity factors of the salt forms of cholate and its conjugates increased dramatically with increasing ionic strength of the mobile phase; retention of the protonated forms (cholic and glycocholic acids) was only minimally influenced by ionic strength. Thus the difference in hydrophilic-hydrophobic balance between a bile acid and its corresponding salt decreases with increasing ionic strength. Examples are given of calculation of hydrophobicity indices for biliary bile salts (fully ionized) from four species under conditions of intact enterohepatic circulation. Mean values, from least to most hydrophobic, were: rat (-0.31) less than dog (0.11) less than hamster (0.22) less than human (0.32). This study provides a rational basis for calculating the hydrophilic-hydrophobic balance of mixed bile salt solutions over a broad range of pH.  相似文献   

9.
The principles governing the in vitro solubility of the common natural conjugated and unconjugated bile acids and salts in relation to pH, micelle formation, and Ca2+ concentration are considered from a theoretical standpoint and then correlated first with experimental observations on model systems and second with the formation of precipitates containing bile acids in health and disease. In vitro, taurine-conjugated bile acids are soluble at strongly acidic pH; glycine-conjugated bile acids are poorly soluble at moderately acidic pH; and many of the common, natural unconjugated bile acids are insoluble at neutral pH. For both glycine-conjugated and unconjugated bile acids, solubility rises exponentially, with increasing pH, until the concentration of the anion reaches the critical micellization concentration (CMC) when micelle formation occurs and solubility becomes practically unlimited. In vivo, in health, conjugated bile acids are present in micellar form in the biliary and intestinal tract. Unconjugated bile acids formed in the large intestine remain at low monomeric concentrations because of the acidic pH of the proximal colon, binding to bacteria, and absorption across the intestinal mucosa. In diseases in which proximal small intestinal content is abnormally acidic, precipitation of glycine-conjugated bile acids (in protonated form) occurs. Increased bacterial formation of unconjugated bile acids occurs with stasis in the biliary tract and small intestine; in the intestine, unconjugated bile acids precipitate in the protonated form. If the precipitates aggregate, an enterolith may be formed. In vitro, the calcium salts of taurine conjugates are highly water soluble, whereas the calcium salts of glycine conjugates and unconjugated bile acids possess limited aqueous solubility that is strongly influenced by bile acid structure. Precipitation occurs extremely slowly from supersaturated solutions of glycine-conjugated bile acids because of metastability, whereas super-saturated solutions of unconjugated bile acids rapidly form precipitates of the calcium salt. In systems containing Ca2+ ions and unconjugated bile acids, pH is important, since it is the key determinant of the anion concentration. For bile acids with relatively soluble calcium salts (or with a low CMC), the concentration of the anion will reach the CMC and micelles will form, thus precluding formation of the insoluble calcium salt. For bile acids, with relatively insoluble calcium salts (or with a high CMC), the effect of increasing pH is to cause the anion to reach the solubility product of the calcium salt before reaching the CMC so that precipitation of the calcium salt occurs instead of micelle formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Studies were done on the effect of bile salts on the rates of hydrolysis of the N-acetylneuraminyl linkages of several sialic acid-containing compounds by the neuraminidase of Clostridium perfringens. When GM3-ganglioside, two glycolipids (glycophorin and orosomucoid) and neuraminyl-lactose were used as substrates, hydrolysis was obtained even in the absence of bile salts, but addition of this detergent, below its critical micellar concentration, increased the reaction rates; above the critical micellar concentration of the detergent rates decreased again. When a second ganglioside, GM1, was used as substrate, the requirement for bile salts was absolute; hydrolysis was not observed at all without this detergent. With increasing concentrations of bile salt and in the presence of high concentrations of enzyme, rates of hydrolysis increased, reaching maximal values at fixed ratios of bile salt to GM1-ganglioside. Physical measurements showed that mixtures of bile salt and GM1-ganglioside form mixed micelles that have a higher critical micellar concentration, a lower molecular weight and greater axial ratio than the corresponding micelles of pure GM1-ganglioside.  相似文献   

11.
Cystic fibrosis (CF) is frequently associated with progressive loss of exocrine pancreas function, leading to incomplete digestion and absorption of dietary fat. Supplementing patients with pancreatic lipase reduces fat excretion, but it does not completely correct fat malabsorption, indicating that additional pathological processes affect lipolysis and/or uptake of lipolytic products. To delineate the role of such (post) lipolytic processes in CF-related fat malabsorption, we assessed fat absorption, lipolysis, and fatty acid uptake in two murine CF models by measuring fecal fat excretion and uptake of oleate- and triolein-derived lipid. Pancreatic and biliary function was investigated by determining lipase secretion and biliary bile salt (BS) secretion, respectively. A marked increase in fecal fat excretion was observed in cftr null mice but not in homozygous DeltaF508 mice. Fecal BS loss was enhanced in both CF models, but biliary BS secretion rates were similar. Uptake of free fatty acid was delayed in both CF models, but only in null mice was a specific reduction in lipolytic activity apparent, characterized by strongly reduced triglyceride absorption. Impaired lipolysis was not due to reduced pancreatic lipase secretion. Suppression of gastric acid secretion partially restored lipolytic activity and lipid uptake, indicating that incomplete neutralization of gastric acid impedes fat absorption. We conclude that fat malabsorption in cftr null mice is caused by impairment of lipolysis, which may result from aberrant duodenal pH regulation.  相似文献   

12.
The scavenger receptor class B type I (SR-BI), which is expressed in the liver and intestine, plays a critical role in cholesterol metabolism in rodents. While hepatic SR-BI expression controls high density lipoprotein (HDL) cholesterol metabolism, intestinal SR-BI has been proposed to facilitate cholesterol absorption. To evaluate further the relevance of SR-BI in the enterohepatic circulation of cholesterol and bile salts, we studied biliary lipid secretion, hepatic sterol content and synthesis, bile acid metabolism, fecal neutral sterol excretion, and intestinal cholesterol absorption in SR-BI knockout mice. SR-BI deficiency selectively impaired biliary cholesterol secretion, without concomitant changes in either biliary bile acid or phospholipid secretion. Hepatic total and unesterified cholesterol contents were slightly increased in SR-BI-deficient mice, while sterol synthesis was not significantly changed. Bile acid pool size and composition, as well as fecal bile acid excretion, were not altered in SR-BI knockout mice. Intestinal cholesterol absorption was somewhat increased and fecal sterol excretion was slightly decreased in SR-BI knockout mice relative to controls. These findings establish the critical role of hepatic SR-BI expression in selectively controlling the utilization of HDL cholesterol for biliary secretion. In contrast, SR-BI expression is not essential for intestinal cholesterol absorption.  相似文献   

13.
Cholesterol, despite its poor solubility in aqueous solutions, exchanges efficiently between membranes. Movement of cholesterol between different subcellular membranes in the hepatocyte is necessary for assembly of lipoproteins, biliary cholesterol secretion, and bile acid synthesis. Factors which initiate and facilitate transfer of cholesterol between different membranes in the hepatocyte are incompletely understood. It is known that cholesterol secretion into the bile is linked to bile salt secretion. In the present study, we investigated the effects of bile salts of different physicochemical properties at submicellar concentrations (150- 600 microM) on the transfer of [14C]cholesterol from hepatocytes, or crude hepatocellular membranes (donors), to rat high density lipoproteins (acceptor). Bile salts included taurine conjugates of ursodeoxycholic acid (TUDCA), hyodeoxycholic acid (THDCA), cholic acid (TCA), chenodeoxycholic acid (TCDCA), and deoxycholic acid (TDCA). High density lipoprotein (HDL) was separated from hepatocellular membranes and the transfer of [14C]cholesterol from the membranes to HDL was quantitatively determined. In the absence of HDL, [14C]cholesterol remained confined to the membrane fraction. Following addition of HDL, [4-14C]cholesterol in the HDL fraction increased linearly over time. Addition of hydrophilic bile salts (TUDCA and THDCA) increased transfer of [4-14C]cholesterol to HDL only minimally. By contrast, more hydrophobic bile salts stimulated transfer of labeled cholesterol to HDL, and their potency increased in order of increasing hydrophobicity (TCA less than TCDCA less than TDCA). Both for single bile salts and mixtures of bile salts at a total bile salt concentration of 0.30 mM, the rate of cholesterol transfer exhibited a strong linear correlation with a bile salt monomeric hydrophobicity index (r = 0.95; P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Erythropoietic protoporphyria (EPP) is characterized by toxic accumulation of the hydrophobic compound protoporphyrin (PP). Ferrochelatase-deficient (fch/fch) mice are an animal model for human EPP. Recently, we have demonstrated that the accumulation of another hydrophobic compound, unconjugated bilirubin, could effectively be treated by stimulation of fecal fat excretion. We investigated whether stimulation of fecal fat excretion enhanced the disposal of PP in fch/fch mice. Fch/fch mice were fed for 8 wk with a high-fat diet (16 wt% fat; control) or with the high-fat diet mixed with either a nonabsorbable fat (sucrose polyester) or the intestinal lipase inhibitor orlistat. The effects of the treatments on fecal excretion of fat and PP and on hepatic PP concentrations were compared with control diets. Fecal fat excretion in fch/fch mice on a high-fat diet was higher than in mice on a low-fat diet (+149%, P < 0.05). Sucrose polyesters and orlistat increased fecal fat excretion even more, up to sixfold of control values. However, none of the different treatments affected fecal PP excretion or hepatic PP concentration. Treatment of fch/fch mice with a high-fat diet, a nonabsorbable fat diet, or with orlistat increased the fecal excretion of fat but did not increase fecal PP excretion or decrease hepatic PP concentration. The present data indicate that accumulation of PP is not amenable to stimulation of fecal fat excretion.  相似文献   

15.
Liver disease is a severe complication in patients with Cystic Fibrosis (CF), a genetic disease caused by mutations in the gene encoding for cystic fibrosis transmembrane conductance regulator (CFTR) channel. The sequence of events leading to CFLD is still unclear and has limited the development of more specific treatments other than the bile acid UDCA. However, in the last twenty years, several gaps have been filled, which have mainly been possible due to the availability of different animal models that mimic CF. CF mice, although they lack a spontaneous liver manifestation, have been essential to better understand the multiple functions of CFTR expression on the apical membrane of cholangiocytes, from chloride channel to regulator of epithelial innate immunity. Additionally, we have learned that the gut microbiota might be a pathogenetic factor for the development of liver disease. The recent creation of novel CF animal models (i.e. pig and ferret) that better reproduce the human disease, will allow for comparative studies with species that spontaneously develop the liver disease and will hopefully lead to novel therapeutic treatments. In this review, we have compared and summarized the main features of the current available CF animal models and their applicability for the study of the liver phenotype.  相似文献   

16.
Isolation and properties of conjugated bilirubin from bile   总被引:21,自引:8,他引:13       下载免费PDF全文
1. A simple, rapid solvent partition method is described for isolation of conjugated bilirubin, free of unconjugated bilirubin, bile salts, phospholipids and cholesterol, from rat bile. Yields are 40-58%. The product is a phosphate-buffered solution containing approx. 0.4mg of bilirubin/ml, principally as mono- and di-glucuronide conjugates. The method may be modified for isolation of conjugates from human bile with 15-22% yield, and for preparation of unconjugated bilirubin from rat or human bile with yields of 55-62%. 2. The conjugated pigment has red-brown fluorescence and an absorption maximum at 450nm with in(mM) 59.8cm(-1). Diazotization by the Malloy-Evelyn method gives a direct Van den Bergh reaction (in water) 12% greater than the total reaction (in methanol), with in(total) 28.4x10(3)lmol(-1)cm(-1) at 550nm. After desalting by elution from Sephadex LH-20 in 50% (v/v) ethanol, the product gave water-soluble mustard-yellow crystalline needles. Such desalted conjugates were precipitated by Pb(2+) but not by Ba(2+), Ca(2+) or Zn(2+). 3. At pH7.0 and 37 degrees C the conjugated bilirubin was oxidized at a rate of 1%/h without hydrolysis, whereas 84% was hydrolysed by beta-glucuronidase or aqueous alkali. 4. Mono- and di-glucuronides were separated by elution from Sephadex LH-20 in 95% (v/v) ethanol or by extraction with chloroform at pH3.2-3.4. The monoconjugated bilirubin did not become labelled during incubation with unconjugated [(14)C]bilirubin, and chromatographed as a single spot without dissociating into unconjugated bilirubin and diglucuronide as would be expected of a complex. 5. After intravenous injection of mono- or di-conjugated [(14)C]bilirubin into normal or Gunn rats, 79-91% was excreted in bile and 2-7% in urine over 2h. In these experiments injected diglucuronide was not hydrolysed whereas 30-41% of injected monoglucuronide was converted into diglucuronide by the normal but not by the Gunn rats. The evidence favours the existence of a true bilirubin mono-glucuronide that is not a complex.  相似文献   

17.
Verapamil was studied for its effects on secretory function of liver in rats. In the animals with low initial level of bile secretion, infusion of verapamil resulted in increase of the bile flow conjugated with taurine bile salts and ester of cholesterol, and in reduction of the non-conjugated bile salts secretion, as well as bile salts conjugated with glycine. In the animals with high initial level of the liver secretory function, verapamil decreased the bile flow, the secretion of unconjugated bile salts, and bile salts conjugated with taurine and glycine, phospholipids, cholesterol and its ester. The changes of bile flow and biliary secretion of bile acids and lipids in two groups of animals suggest that verapamil could be influenced in regulation of bile secretion depending on its initial level. Possible mechanisms of the bile secretion regulation by verapamil, are discussed.  相似文献   

18.
The effect of 50% or 80% distal enteroctomy on cholesterol and bile salt levels in male Wistar rats have been investigated. Short time measurements showed that serum cholesterol levels were maximal after 20 days from 50% intestinal resection and after 10 days from 80% intestinal resection. This increase was maintained in 50% resected rats 1 and 5 months after operation, whilts in 80% resected group the values became normal. Portal blood and bile cholesterol levels remain almost normal except 5 months after 50% intestinal resection. Bile salt concentration and bile salt output in the bile decrease after 1 and 5 months from 50% intestinal resection and after 1 month from 80% intestinal resection. These results together with data of fecal loss of bile salts indicate that in 50% resected rats new steady states have been reached, with low levels of bile salts in the bile. One month after 80% resection the fecal loss of bile salts was so high that the conversion of cholesterol into bile salts was increased. After 5 months from 80% resection values in serum and bile were almost normal suggesting either an increase in extrahepatic cholesterol synthesis or a partial prevention of fecal loss that can be explained by the observed caecal enlargement.  相似文献   

19.
Biliary ducts collect bile from liver lobules, the smallest functional and anatomical units of liver, and carry it to the gallbladder. Disruptions in this process caused by defective embryonic development, or through ductal reaction in liver disease have a major impact on life quality and survival of patients. A deep understanding of the processes underlying bile duct lumen formation is crucial to identify intervention points to avoid or treat the appearance of defective bile ducts. Several hypotheses have been proposed to characterize the biophysical mechanisms driving initial bile duct lumen formation during embryogenesis. Here, guided by the quantification of morphological features and expression of genes in bile ducts from embryonic mouse liver, we sharpened these hypotheses and collected data to develop a high resolution individual cell-based computational model that enables to test alternative hypotheses in silico. This model permits realistic simulations of tissue and cell mechanics at sub-cellular scale. Our simulations suggest that successful bile duct lumen formation requires a simultaneous contribution of directed cell division of cholangiocytes, local osmotic effects generated by salt excretion in the lumen, and temporally-controlled differentiation of hepatoblasts to cholangiocytes, with apical constriction of cholangiocytes only moderately affecting luminal size.  相似文献   

20.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号