首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of either static or pulsed magnetic fields on the reaction rate of Fremy's salt-ascorbic acid were studied directly by EPR spectroscopy. Radical pair mechanism (RPM) accounts for the magnetic field effects, but the expected amounts are so small that they need to be observed with particular care with EPR technique. The method is based on the resolution of a pair of EPR signals by the addition of a stationary field gradient, where the signals are coming from the exposed and control capillary sample. To this purpose, a suitable device for the gradient generation was used. Others improvements were the strictly keeping of the same boundary temperature condition in the capillary pairs, obtained by a refrigerating system controlled by a thermocouple, and the use of a pair of Helmholtz coils to generate an external high homogeneous magnetic field. By this experimental set up, we found that the magnetic field induce the decrease of the studied radical reaction rate. This EPR approach is a significant alternative to the spectrophotometric one. Moreover, it offers the advantage to detect both the radicals and/or intermediates involved in the reaction.  相似文献   

2.
There is presently an intense discussion if electromagnetic field (EMF) exposure has consequences for human health. This include exposure to structures and appliances that emit in the extremely low frequency (ELF) range of the electromagnetic spectrum, as well as emission coming from communication devices using the radiofrequency part of the spectrum. Biological effects of such exposures have been noted frequently, although the implication for specific health effects is not that clear. The basic interaction mechanism(s) between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. In addition, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. Although 50/60 Hz EMF do not directly lead to genotoxic effects, it is possible that certain cellular processes altered by exposure to EMF indirectly affect the structure of DNA causing strand breaks and other chromosomal aberrations. The aim of this article is to present a hypothesis of a possible initial cellular event affected by exposure to ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation by means of increasing levels of free radicals. Such a general activation is compatible with the diverse nature of observed effects. Free radicals are intermediates in natural processes like mitochondrial metabolism and are also a key feature of phagocytosis. Free radical release is inducible by ionizing radiation or phorbol ester treatment, both leading to genomic instability. EMF might be a stimulus to induce an "activated state" of the cell such as phagocytosis, which then enhances the release of free radicals, in turn leading to genotoxic events. We envisage that EMF exposure can cause both acute and chronic effects that are mediated by increased free radical levels: (1) Direct activation of, for example macrophages (or other cells) by short-term exposure to EMF leads to phagocytosis (or other cell specific responses) and consequently, free radical production. This pathway may be utilized to positively influence certain aspects of the immune response, and could be useful for specific therapeutic applications. (2) EMF-induced macrophage (cell) activation includes direct stimulation of free radical production. (3) An increase in the lifetime of free radicals by EMF leads to persistently elevated free radical concentrations. In general, reactions in which radicals are involved become more frequent, increasing the possibility of DNA damage. (4) Long-term EMF exposure leads to a chronically increased level of free radicals, subsequently causing an inhibition of the effects of the pineal gland hormone melatonin. Taken together, these EMF induced reactions could lead to a higher incidence of DNA damage and therefore, to an increased risk of tumour development. While the effects on melatonin and the extension of the lifetime of radicals can explain the link between EMF exposure and the incidence of for example leukaemia, the two additional mechanisms described here specifically for mouse macrophages, can explain the possible correlation between immune cell system stimulation and EMF exposure.  相似文献   

3.
Electromagnetic fields of very low amplitude have been reported to influence a number of cellular functions. Many of these effects have a high degree of frequency specificity. Herein it is suggested that some of these reported results could be explained by a fieldinduced alteration in the enzymic activity of integral membrane proteins. It is shown that such a field-induced transition from an initial nonequilibrium steady-state to a final nonequilibrium steady-state can lead to an alteration in the concentration profiles of those charged species in the cell's ambient electrolyte that comprise the so-called electrical double layer. Examples of variations in the concentration profiles of those ions that react with a membrane-bound enzyme, as well as nonreacting ionic species, are given. The modulation of such effects by systematic variations in extracellular pH and ionic strength is discussed.  相似文献   

4.
Electromagnetic fields of very low amplitude have been reported to influence a number of cellular functions. Many of these effects have a high degree of frequency specificity. Herein it is suggested that some of these reported results could be explained by a field-induced alteration in the enzymic activity of integral membrane proteins. It is shown that such a field-induced transition from an initial nonequilibrium steady-state to a final nonequilibrium steady-state can lead to an alteration in the concentration profiles of those charged species in the cell's ambient electrolyte that comprise the so-called electrical double layer. Examples of variations in the concentration profiles of those ions that react with a membrane-bound enzyme, as well as nonreacting ionic species, are given. The modulation of such effects by systematic variations in extracellular pH and ionic strength is discussed.  相似文献   

5.
Exposures to a hypomagnetic field can affect biological processes. Recently, it has been observed that hypomagnetic field exposure can adversely affect adult hippocampal neurogenesis and hippocampus-dependent cognition in mice. In the same study, the role of reactive oxygen species (ROS) in hypomagnetic field effects has been demonstrated. However, the mechanistic reasons behind this effect are not clear. This study proposes a radical pair mechanism based on a flavin-superoxide radical pair to explain the modulation of ROS production and the attenuation of adult hippocampal neurogenesis in a hypomagnetic field. The results of our calculations favor a singlet-born radical pair over a triplet-born radical pair. Our model predicts hypomagnetic field effects on the triplet/singlet yield of comparable strength as the effects observed in experimental studies on adult hippocampal neurogenesis. Our predictions are in qualitative agreement with experimental results on superoxide concentration and other observed ROS effects. We also predict the effects of applied magnetic fields and oxygen isotopic substitution on adult hippocampal neurogenesis.  相似文献   

6.
The effect of steady magnetic fields (ranging from 0 to 280 mT) has been investigated on the kinetics of non-enzymatic lipid peroxidation occurring in a model system consisting of liposomes obtained from 1, 2-dioleoylphosphatidylcholine by oxygen consumption. The process was found to be accelerated by weak steady magnetic fields. A computer simulation method was employed to detect the reactions that govern the process kinetics, to elucidate magneto-sensitive stages (initiation and reduction of iron(III), as well as lipid peroxide radical recombination) and to determine their rate constants at various external magnetic fields. The kinetics of peroxidation of lipid cell membranes have been modeled mathematically at oxygen and ‘free’ iron concentrations close to those in the cells and also at increased free iron concentrations at different external magnetic field values.  相似文献   

7.
Effects of very weak magnetic fields on radical pair reformation   总被引:4,自引:0,他引:4  
We can expect that biological responses to very weak ELF electromagnetic fields will be masked by thermal noise. However, the spin of electrons bound to biologically important molecules is not strongly coupled to the thermal bath, and the effects of the precession of those spins by external magnetic fields is not bounded by thermal noise. Hence, the known role of spin orientation in the recombination of radical pairs (RP) may constitute a mechanism for the biological effects of very weak fields. That recombination will generally take place only if the valence electrons in the two radicals are in a singlet state and the effect of the magnetic field is manifest through differential spin precessions that affect the occupation of that state. Because the spin relaxation times are of the order of microseconds, any effects must be largely independent of frequency up to values of a few megahertz. Using exact calculations on an appropriately general model system, we show that one can expect small, but significant, modifications of the recombination rate by a 50 microT field only under a narrow range of circumstances: the cage time during which the two elements are together must be exceptionally long--of the order of 50 ns or longer; the hyperfine field of either radical must not be so great as to generate a precession period greater than the cage containment time; and the characteristic recombination time of the radical pair in the singlet state must be about equal to the containment time. Thus, even under such singularly favorable conditions, fields as small as 5 microT (50 milligauss) cannot change the recombination rate by as much as 1%. Hence, we conclude that environmental magnetic fields much weaker than the earth's field cannot be expected to affect biology significantly by modifying radical pair recombination probabilities.  相似文献   

8.
9.
In biological research, new ideas arise and quickly spread to encompass the entire field. Thus, the evolution of molecular biology has significantly changed our methods of approaching our research. A similar far-reaching finding has been the advent of radical reactions into biology. Although radical chemistry has been utilzed for many technological advances that affect our daily lives, the appreciation of this same process within our cells has opened an unexplored arena for research enquiry. As cellular messengers, radical molecules seem shimsically designed: they are evanescent, rapidly and apparently indiscriminately reactive, and barely detectable bymost biological methods. Yet, our initial probing of these reactive agents in cells and organisms has led us to postulate a virtually undescribed system of communication within and among cells which may have significant effects in multiple organs. In bone, radical reactions have been attributed with an important role in the control of bone resorption.  相似文献   

10.
The ability of some animals to sense magnetic fields has long captured the human imagination. In our recent paper, we explored how radical pair effects in the protein cryptochrome may underlie the magnetic orientation sense of migratory birds. Here we explain our model and discuss its relationship to experimental results on plant cryptochromes, as well as discuss the next steps in refining our model, and explore alternate but related possibilities for modeling and understanding cryptochrome as a magnetic sensor.Key words: cryptochrome, radical pair machanism, avian orientation, magnetic field effect, Arabidopsis thaliana, avian magnetoreception, magnetic sensorThe ability of some animals to sense magnetic fields is a long-standing open problem in biology. Over the past 50 years, scientific studies have shown that a wide variety of living organisms have the ability to perceive magnetic fields and can use information from the earth''s magnetic field in orientation behavior. The best-studied example of animal magnetoreception is the case of migratory birds, who use the earth''s magnetic field, as well as a variety of other environmental cues, to find their way during migration.The two prevailing hypotheses for the mechanism of avian magnetoreception are an iron-mineral-based explanation, wherein birds use small deposits of magnetic iron minerals1,2,12 in the base of their beaks for magnetic orientation, and a radical-pair-based explanation, in which a magnetically sensitive chemical reaction in the eye of the bird enables perception of the magnetic field via its effects on reaction products. The latter hypothesis is based on the idea that a radical pair reaction may take place in the protein cryptochrome in the retina of the bird.3,4 Cryptochrome contains a blue-light-absorbing chromophore, flavin adenine dinucleotide (FAD); this FAD cofactor is reduced via a series of light-induced electron transfers from a chain of three tryptophans that bridge the space between FAD and the protein surface (see Fig. 1). The hypothesis explored in our paper4 is that a radical pair reaction takes place between FAD and the tryptophans in the photoreduction pathway which modulates the signaling activity of cryptochrome. The specifics of this idea are outlined in Figure 1.Open in a separate windowFigure 1Right: Cryptochrome internally binds the FAD cofactor and contains a three-tryptophan photoreduction pathway conserved from photolyase, consisting of Trp400, Trp377, and Trp324, with Trp400 nearest the FAD and Trp324 closest to the protein surface. After the FAD cofactor absorbs a photon, bringing it into an excited state, it is protonated from a nearby acidic residue, and then electron transfer proceeds from Trp400. At this stage, the semireduced FADH and Trp400+ comprise a radical pair—that is, each partner has an unpaired electron, and the spins of those electrons are in a correlated state. Cryptochrome is thought to be in its active, signaling state when the FAD cofactor is in this semireduced FADH form. An electron is then transferred from Trp377 to Trp400 and from Trp324 to Trp377, forming radical pairs FADH + Trp377+ and FADH + Trp324+ in the process. The Trp324 radical is then deprotonated. Before this final deprotonation, it is possible for the electron to back transfer from the tryptophan to FADH. If this occurs, FADH reverts to the oxidized FAD form, and cryptochrome is no longer in its active state. Left: This schematic of the electron transfer pathway in cryptochrome shows the estimated lifetimes of each of the radical pair states. The system spends most of its time in the FADH + Trp324 radical pair state. Also shown are the electron and nuclear spins on the FADH and Trp324 radicals. Each nuclear spin adds a small contribution to the local magnetic field. The unpaired electron spins are shown here in the singlet (antiparallel) state. They precess around the local magnetic field, which consists of contributions from the external field and from each of the nuclear spins, causing interconversion to the triplet (parallel) state and back again. This singlet-triplet interconversion is the basis of the radical pair effect in the following sense. Electron back-transfer from Trp324 to FADH proceeds only when the unpaired electrons on each radical are in the singlet state. Cryptochrome remains in its active state so long as this back-transfer is impeded. Therefore, singlet-triplet interconversion influences the time cryptochrome can spend in its active state, and so this magnetic-field-driven effect can alter the protein''s signaling behavior.That magnetic field effects do occur in cryptochrome is supported indirectly by experiments done by Margaret Ahmad and co-workers, as reported in their recent paper5 on the effects of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana seedlings. In our paper, Magnetic Field Effects in Arabidopsis thaliana Cryptochrome-1 (4), we sought to evaluate this possibility computationally, to see whether a magnetic field effect in the FADH - tryptophan radical pair is reasonable. We found that it is possible to see a change in cryptochrome activation yield (the amount of time cryptochrome stays in its active state) of about 10%.Unfortunately, the magnetic field dependence of cryptochrome activation seen in our calculations cannot be taken as exact because of several limitations. Chief among these are that the models of the radical pair did not include all nuclei, and the hyperfine coupling constants were taken from DNA photolyase, which is a protein highly similar to cryptochrome in structure, but which does not necessarily have precisely the same hyperfine coupling for the FAD cofactor and the tryptophans in the photoreduction pathway as does cryptochrome. However, the suggested theory is general and with the knowledge of correct hyperfine coupling constants for the radical pair partners it can be used to calculate the activation yield precisely. Although it would be ideal to obtain hyperfine parameters from experiment, it is also possible to calculate the hyperfine coupling constants with advanced ab initio techniques using the Gaussian package.6 Our preliminary calculations of the hyperfine couplings in tryptophan radicals compare well with the values used in our paper.4 This sort of calculation creates the opportunity not only to refine our current picture of the radical pair mechanism in cryptochrome, but also to explore other possible radical pairs in the system.In light of work being done by Margaret Ahmad and co-workers (not yet published), it has been suggested recently that the radical pair reaction in cryptochrome may not occur between the FAD cofactor and tryptophan, but in some other radical pair within the protein. It is possible that rather than occurring in the FAD photoreduction process, the radical pair reaction actually takes place in the reoxidation reaction wherein the semireduced FADH is brought back to the oxidized FAD form. One possible radical pair in the back reaction is between FAD and an oxygen molecule which is thought to be involved in the reoxidization process. This radical pair is of particular interest because an oxygen radical would be devoid of hyperfine interactions. Such a radical pair, where one radical has no hyperfine coupling, would be consistent with studies on the effects of weak radio-frequency oscillating magnetic fields on migratory bird orientation. Thorsten Ritz and co-workers found that appropriate orientation behavior depended not only on the strength and angle of the oscillating field, but also that the minimum field strength necessary to disrupt orientation depended on the frequency of the oscillating field in a resonance-like behavior that would be predicted by just such a radical pair79 (personal communication with T. Ritz).The scientific community is still a long way from a complete understanding of avian magnetoreception. The best that may be said of our understanding of it is that birds do demonstrably perceive and use magnetic field information, and that their responses to magnetic fields under different conditions—light intensity and color, magnetic field strength and presence and frequency of oscillating fields—belies a complex phenomenon which is probably the result of multiple receptors which interact in unknown ways.10,11 However, disorientation responses to low-intensity oscillating magnetic fields are strongly suggestive of the involvement of a radical-pair mechanism, making the exploration of radical pair effects in cryptochrome a useful endeavor. Much remains to be done. Even if cryptochrome is confirmed as magnetoreceptor, it remains for biologists to determine how its signaling modulation enters into a bird''s sensory perception and ultimately its orientation behavior. Nevertheless, radical pair effects in cryptochrome seem promising as a possible source of magnetoreception in birds, and continued investigation may yet shed light on this complex behavior.  相似文献   

11.
Cytoplasm is thought to have many hydrogel-like characteristics, including the ability to absorb large amounts of water and change volume in response to alterations in external environment, as well as having limited leakage of ions and proteins. Some gel-like behaviors have not been rigorously confirmed in mammalian cells, and others should be examined under conditions where gel volume can be accurately monitored. Thus, possible contributions of cytoplasm hydrogel properties to cellular processes such as volume sensing and regulation remain unclear. We used three-dimensional imaging to measure volume of single substrate-attached cells after permeabilization of their plasma membrane. Permeabilized cells swelled or shrinked reversibly in response to variations of external osmolality. Volume changes were 3.7-fold greater than observed with intact cells, consistent with cytoplasm's high water-absorbing capacity. Volume was maximal at neutral pH and shrunk at acidic or alkaline pH, consistent with pH-dependent changes of protein charge density and repulsive forces within cellular matrix. Volume shrunk with increased Mg2+ concentration, as expected for increased charge screening and ionic crosslinking effects. Findings demonstrate that mammalian cytoplasm resembles hydrogel and functions as a highly sensitive osmosensor and extracellular pH sensor. Its high water-absorbing capacity may allow rapid modulation of local fluidity, macromolecular crowding, and activity of intracellular environment.  相似文献   

12.
13.
There is a paucity of information regarding the long-term health effects associated with exposure to static magnetic fields. Perceptual and other acute effects have been demonstrated above a threshold of about 2 T, and these form the basis for human exposure standards at present. Exposures well above this threshold are increasingly becoming more common as the technology associated with magnetic resonance imaging advances. Therefore, priority should be given to assessing the health risks associated with exposures to such fields. Studies should include a prospective cohort study investigating cancer risks of workers and patients exposed to fields in excess of 2 T, a study investigating effects on human cognitive performance from repeated exposures, and a molecular biology study investigating acute changes in genomic responses in volunteers exposed to fields of up to 8 T. Studies investigating the effects of long-term exposure on cancer, and on neurobehavioural development are also recommended using animals, where the use of transgenic models is encouraged. In addition, dosimetric studies should be conducted using high-resolution male, female and pregnant voxel phantoms, as should theoretical studies investigating the local currents induced in the eye and in the heart by movement during exposure. Finally, studies are recommended to investigate further the ability of static magnetic fields to significantly affect radical pair reactions in biological systems.  相似文献   

14.
The radical chemistry of the plant polyphenolics epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were investigated using electron paramagnetic resonance spectroscopy. Radical species formed spontaneously in aqueous solutions at low pH without external oxidant and were spin stabilized with Zn(II). The spectra were assigned to the gallyl radical and the anion gallyl radical, with only 10% of the signal assigned to a radical from the galloyl ester. Spectral simulations were used to establish a pK(a) of 4.8 for the EGCG radical and a pK(a) of 4.4 for the EGC radical. The electrochemical redox potentials of EGCG and EGC varied from 1000 mV at pH 3 to 400 mV at pH 8. The polyphenolics did not produce hydroxyl radicals unless reduced metal ions such as iron(II) were added to the system. Zinc(II)-stabilized EGCG radicals were more effective protein-precipitating agents than unoxidized EGCG and produced irreversibly complexed protein. EGCG and other naturally occurring polyphenolics are effective radical scavengers but their radical products have the potential to damage biological molecules such as proteins.  相似文献   

15.
In micro-organisms, as well as in metazoan cells, cellular polarization and directed migration are finely regulated by external stimuli, including mechanical stresses. The mechanisms sustaining the transduction of such external stresses into intracellular biochemical signals remain mainly unknown. Using an external magnetic tip, we generated a magnetic field gradient that allows migration analysis of cells submitted to local low-intensity magnetic forces (50 pN). We applied our system to the amoeba Entamoeba histolytica. Indeed, motility and chemotaxis are key activities that allow this parasite to invade and destroy the human tissues during amoebiasis. The magnetic force was applied either inside the cytoplasm or externally at the rear pole of the amoeba. We observed that the application of an intracellular force did not affect cell polarization and migration, whereas the application of the force at the rear pole of the cell induced a persistent polarization and strongly directional motion, almost directly opposed to the magnetic force. This phenomenon was completely abolished when phosphatidylinositol 3-kinase activity was inhibited by wortmanin. This result demonstrated that the applied mechanical stimulus was transduced and amplified into an intracellular biochemical signal, a process that allows such low-intensity force to strongly modify the migration behavior of the cell.  相似文献   

16.
Several physical effects (magnetomotive force on ions, magnetic induction of electrical field, magnetic changes of inductance) are quantitatively analyzed in an attempt to attain an insight on how externally applied static magnetic fields influence the activity of the neuron and the Nervous System as a whole or in part. The possible magnetic action on shifting excited zones of the axon appears as most promising for prediction and interpretation of measurable effects. Magnetic fields may modify nervous functions by multiplication and addition of very small biophysical effects.  相似文献   

17.
The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. SMF influenced cellular antioxidant defense mechanisms by affecting antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). However, there were insufficient reports about the effects of SMF on macro and trace elements in serum, and the results were contradictory until now. In the current study, 12 rats were divided into two groups, namely as control and exposure group (128 mT and 1 h/day during five consecutive days). The macro and trace element concentrations in serum were examined. No significant difference was observed in the sodium (Na), potassium (K), calcium (Ca), phosphorus (P), and selenium (Se) levels in rat compared to control. By contrast, exposure to SMF showed an increase in the zinc (Zn) level and a decrease in iron (Fe) concentration. Under our experimental conditions, SMF exposure cannot affect the plasma levels of macroelements, while it can disrupt Zn and Fe concentrations in rat.  相似文献   

18.
A prototypical model for describing magnetic field effects on the reaction kinetics of enzymes that exhibit radical pair recombination steps in their reaction cycle is presented. The model is an extended Michaelis-Menten reaction scheme including an intermediate enzyme-substrate complex where a spin-correlated radical pair state exists. The simple structure of the scheme makes it possible to calculate the enzyme reaction rate explicitly by combining chemical kinetics with magnetic field-dependent spin kinetics (radical pair mechanism). Recombination probability is determined by using the exponential model. Simulations show that the size of the magnetic field effect depends on relations between different rate constants, such as 1) the ratio between radical pair-lifetime and the magnetic field-sensitive intersystem crossing induced by the hyperfine interaction and the delta g mechanisms and 2) the chemical rate constants of the enzyme reaction cycle. An amplification factor that is derived from the specific relations between the rate constants is defined. It accounts for the fact that although the magnetic field-induced change in radical pair recombination probability is very small, the effect on the enzyme reaction rate is considerably larger, for example, by a factor of 1 to 100. Model simulations enable a qualitative comparison with recent experimental studies reporting magnetic field effects on coenzyme B12-dependent ethanolamine ammonia lyase in vitro activity that revealed a reduction in Vmax/KM at low flux densities and a return to the zero-field rate or an increase at high flux densities.  相似文献   

19.
Diabetes is a multifactorial disease that has now been recognized to involve overproduction of reactive oxygen species and pro-inflammatory cytokines. Peroxisomes are subcellular organelles with several important metabolic functions, and their role in the regulation of cellular oxidative stress is now well established. Despite having their own antioxidant system, peroxisomes undergo functional alterations during various conditions that are associated with free radical production such as inflammation, ischemia-reperfusion, carcinogenesis and diabetes. In this study we investigated the effect of diabetes on peroxisomal functions in rat kidneys and show for the first time that experimental diabetes induces redox-sensitive enhancement of peroxisomal activities. Streptozotocin-induced diabetes significantly increased (p<0.01) -oxidation of lignoceric acid and the enzymic activity of acyl coenzyme A oxidase. Catalase activity was significantly reduced (p<0.01) in the kidneys of diabetic rats, whereas the enzymic activity of DHAPATase (dihydroxyacetone phosphate acyltransferase) was not markedly affected by diabetes. Treatment of diabetic rats with antioxidants, thiocetic acid and vitamin C attenuated the diabetes-induced modulation of peroxisomal functions. The present study shows that the diabetes-induced effects on kidney peroxisomal functions are redox sensitive, and antioxidants might prove useful tools to alleviate nephropathy in diabetes.  相似文献   

20.
Some neurochemical effects of low-intensity electric and magnetic fields have been shown to be nonlinear functions of exposure parameters. These effects occurred within narrow ranges of frequency and intensity. Previous studies on membrane-associated endpoints in cell culture preparations demonstrated changes in calcium efflux and in acetylcholinesterase activity following exposure to radiofrequency radiation, amplitude modulated (AM) at 16 and at 60 Hz, at a specific absorption rate of 0.05 W/kg. In this study, these modulation frequencies were tested for their influence on the activity of a cytoplasmic enzyme, enolase, which is being tested clinically for detection of neoplasia. Escherichia coli cultures containing a plasmid with a mammalian gene for enolase were exposed for 30 min, and cell extracts were assayed for enolase activity by measuring absorbance at 240 nm. The enolase activity in exposed cultures was compared to the activity in paired control cultures. Exposure to 147 MHz carrier waves at 0.05 W/kg, AM at 16 Hz showed enolase activity enhanced by 62%, and AM at 60 Hz showed enolase activity reduced by 28%. Similarly, exposure to 16 Hz fields alone, at 21.2 V/mrms (electric) and 97 nTrms (magnetic), showed enhancement in enolase activity by 59%, whereas exposure to 60 Hz fields alone, at 14.1 V/mrms (electric) and 65 nTrms (magnetic), showed reduction in activity by 24%. Sham exposures as well as exposure to continuous-wave 147 MHz radiation at 0.05 W/kg showed no change in enolase activity. Although the underlying basis for these field effects in the cytoplasmic compartment has not been established, differential sensitivities to 16 Hz and to 60 Hz signals provide a clear focus for additional research to determine the responsible mechanism. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号