首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transretinal current flowing from the receptor side to the vitreous side depolarizes the axon terminals of retinal cells and facilitates the release of transmitter. Such current elicited a depolarizing response in off-center bipolar cells and a hyperpolarizing response in on-center bipolar cells. It also elicited a response of relatively complex waveform in amacrine cells. The responses elicited in bipolar cells were suppressed in the presence of 5-10 mM glutamate in the perfusing Ringer solution, while the responses of amacrine cells persisted, although their waveform changed to a simple one that showed monotonic depolarization irrespective of the type of amacrine cell and were accompanied by a decrease in the membrane resistance. The results indicate excitatory synaptic transmission from bipolar cells to amacrine cells. Since the response elicited by current in ON-OFF cells was almost identical to those elicited in ON or OFF amacrine cells, the transient nature of their light response cannot be due to their membrane properties. ON-OFF cells responded to transretinal current flowing in the opposite direction with a small hyperpolarization accompanied by a resistance increase. The hyperpolarizing response was suppressed by the addition of GABA in glutamate Ringer solution. The results suggest an activation by the current of GABA-ergic feedback pathways from amacrine cells to bipolar cells.  相似文献   

2.
Interleukin-1 beta (IL-1beta) is an important regulator of the thyroid cell function. This cytokine has been largely described to trigger an important biological signaling cascade: the sphingomyelin/ceramide pathway. In this report, we show that IL-1beta induces the transient activation of a neutral sphingomyelinase in porcine thyroid cells. Moreover, IL-1beta and ceramides are demonstrated to inhibit the TSH-induced cAMP production via the implication of alphaGi subunit of the adenylyl cyclase system. This crosstalk between cAMP and ceramide pathways constitutes a preponderant process in the TSH-controlled differentiation state of thyrocytes. All these results argue for the involvement of ceramides and IL-1beta in the thyroid function regulation, leading to a cell dedifferentiated state.  相似文献   

3.
The use of electromagnetic current induction to modulate cell and tissue behavior via cell surface electrochemistry is considered in detail. It is shown that a strong correlation exists between electrochemical kinetic phenomena at cell surfaces, observable via transient impedance measurements, and the choice of induced current waveform parameters. In particular, the current pathway involving specific adsorption, such as that of Na+ or K+ at Na–K ATPase sites, appears to provide the strongest mechanistic correlation. Inductively coupled current signals can be constructed with the appropriate frequency content to excite this pathway. The actual electrical dosage appearing at the cellular level has been evaluated using air-gap Helmholtz coils. It is shown that Maxwell's equations, written for cylindrical geometry, accurately describe the spatial variation of current pulses in isotonic saline. An experimental technique for measurement of the induced electric field and current density vectors is described and applied to pure saline, a cell/saline complex, and muscle and bone tissuein vivo. The results obtained provide practical guidelines for the preferred coil/cell (tissue) orientations for the most uniform real-time dosage for cell culture, cell suspension, andin vivo situations.A portion of this work was performed at the Bioelectrochemistry Laboratory, Department of Orthopedic Surgery, Columbia University, New York, NY 10032.  相似文献   

4.
Newbern JM  Snider WD 《Neuron》2012,73(4):623-626
In this issue of Neuron, Napoli et al. (2012) demonstrate that elevated ERK/MAPK signaling in Schwann cells is a crucial trigger for Schwann cell dedifferentiation in vivo. Moreover, the authors show that dedifferentiated Schwann cells have the potential to coordinate much of the peripheral nerve response to injury.  相似文献   

5.
Summary Enterrocytes from the intestinal epithelium of the winter flounder were isolated by collagenase digestion and incubated in flounder Ringer solution. Conventional whole-cell and amphotericin-perforated whole-cell recording techniques were used to characterize the properties of a voltage-activated K current present in dissociated cells. Resting membrane potentials and series resistances were significantly lower (from –23 to – 39 mV and 29 to 13 M, respectively) when amphotericin was used to achieve the whole-cell configuration. When cells were placed in flounder Ringer solution, held at –80 mV and subsequently stepped to a series of depolarizing voltages (from–70 to 0 mV), an outward current was observed that exhibited inactivation at voltages above –20 mV. This current was sensitive to holding potential and was not activated when the cells were held at –40 mV or above. When cells were bathed in symmetric K Ringer solution and the same voltage protocol was applied to the cell, inward currents were observed in response to the negative intracellular potentials. Reversal potentials at two different extracellular K concentrations were consistent with K as the currentcarrying ion. BaCl2 (2 mM) and CsCl (0.5 mM) both produced voltage-dependent blockade of the current when added to the bathing solution. Charybdotoxin (300 nM extracellular concentration) completely blocked the current. The IC50 for charybdotoxin was 50 nM. Cyclic. GMP inhibited the voltage-activated current in flounder Ringer and in symmetric K Ringer solution. The cyclic GMP analog, 8-Br cGMP, lowered the threshold for voltage activation and potentiated inactivation of the current at voltages above–40 mV. Previous studies with intact flounder epithelium showed that K recycling and net K secretion were inhibited by Ba2+ and by cGMP. We suggest that the channel responsible for the whole-cell current described in this study may be important in K recycling and secretion.  相似文献   

6.
The influence of the hypertonic (3%) solution of mannitol on the process of the excitability recovery (in the near necrotic zone) appeared as a result of the necroses tissue effect on the ventricle has been investigated in the experiments on the isolated frog's heart. The analogous perfusion was conducted by Ringer solution in the control experiments. The process of isopotential phase S-T recovery was practically the same at heart perfusion with Ringer solution or with mannitol. Simultaneous registration of ventricular mechanogram showed the pronounced negative inotropic effect of mannitol. It is suggested that the positive effect of mannitol which has been noted under clinic conditions during the treatment of ischemic disease, doesn't connect with the effect of hypertonic solution on the cells excitability of periinfarcted (near necrotic) zone.  相似文献   

7.
Pigmented epithelial cells of chicken and human dedifferentiate in the medium containing phenylthiourea and testicular hyaluronidase, and then trans-differentiate into lens cells in vitro. To understand the molecular mechanisms of transdifferentiation, gene expression during lens transdifferentiation was analyzed. As the first step, pigment cell and lens specific genes were isolated and expression of these gene was analyzed by Northern blotting . These results clearly shown that lens transdifferentiation proceeds via neutral cell state in which both pigment and lens specific genes are repressed. Oncogene expression was also analyzed. An elevated expression of the c-myc gene was observed during dedifferentiation process. It is expected that elevated expression of c-myc gene might prevent the cells from entering the G0 phase and thus lead to dedifferentiated state.  相似文献   

8.
Previous studies in our laboratory have shown that Na absorption across the porcine endometrium is stimulated by PGF and cAMP-dependent activation of a barium-sensitive K channel located in the basolateral membrane of surface epithelial cells. In this study, we identify and characterize this basolateral, barium-sensitive K conductance. Porcine uterine tissues were mounted in Ussing chambers and bathed with KMeSO4 Ringer solution. Amphotericin B (70 μm) was added to the luminal solution to permeabilize the apical membrane and determine the current-voltage relationship of the basolateral K conductance after activation by 100 μm CPT-cAMP. An inwardly rectifying current was identified which possessed a reversal potential of −53 mV when standard Ringer solution was used to bathe the serosal surface. The K:Na selectivity ratio was calculated to be 12:1. Administration of 5 mm barium to the serosal solution completely inhibited the current activated by cAMP under these conditions. In addition to these experiments, amphotericin-perforated whole cell patch clamp recordings were obtained from primary cultures of porcine surface endometrial cells. The isolated cells displayed an inwardly rectifying current under basal conditions. This current was significantly stimulated by CPT-cAMP and blocked by barium. These results together with our previous studies demonstrate that cAMP increases Na absorption in porcine endometrial epithelial cells by activating an inwardly rectifying K channel present in the basolateral membrane. Similar patch clamp experiments were conducted using cells from a human endometrial epithelial cell line, RL95-2. An inwardly rectifying current was also identified in these cells which possessed a reversal potential of −56 mV when the cells were bathed in standard Ringer solution. This current was blocked by barium as well as cesium. However, the current from the human cells did not appear to be activated by cAMP, indicating that distinct subtypes of inwardly rectifying K channels are present in endometrial epithelial cells from different species. Received: 6 February 1997/Revised: 10 July 1997  相似文献   

9.
Although pulsed electromagnetic fields (PEMFs) have been used for treatments of nonunion bone fracture healing for more than three decades, the underlying cellular mechanism of bone formation promoted by PEMFs is still unclear. It has been observed that a series of parameters such as pulse shape and frequency should be carefully controlled to achieve effective treatments. In this article, the effects of PEMFs with repetitive pulse burst waveform on the cellular activity of SaOS-2 osteoblast-like cells were investigated. In particular, cell proliferation and mineralization due to the imposed PEMFs were assessed through direct cell counts, the MTT assay, tissue nonspecific alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining. PEMF stimulation with repetitive pulse burst waveform did not affect metabolic activity and cell number. However, the ALP activity of SaOS-2 cells and mineral nodule formation increased significantly after PEMF stimulation. These observations suggest that repetitive pulse burst PEMF does not affect cellular metabolism; however, it may play a role in the enhancement of SaOS-2 cell mineralization. We are currently investigating cellular responses under different PEMF waveforms and Western blots for protein expression of bone mineralization specific proteins.  相似文献   

10.
We have probed the mechanism by which immature B cells are uniquely susceptible to antigen-induced inactivation. Our studies have demonstrated that this tolerance trigger is an active process that requires both energy metabolism and the biosynthesis of various macromolecules, including protein, RNA, and DNA. However, the tolerance trigger is resistant to inhibitors of patching and capping, as well as an inhibitor of mitosis. The tolerance trigger requires a high-affinity interaction between a multivalent antigen and the cells' Ig receptor, but apparently does not require interactions with other cell surface molecules, or interactions with T cells or macrophages. Our efforts to demonstrate the physiological applicability of this tolerance trigger have concentrated on an attempt to demonstrate potentially self-reactive cells within the immature bone marrow population that do not appear in the mature splenic B cell population. To date we have identified prereceptor B cells of several specificities whose frequency is much lower in the spleen and whose elimination appears to involve tolerance rather than antiidiotypic regulation. However, the demonstration that such cells are eliminated by contact with self-antigens has not as yet been accomplished.  相似文献   

11.
ABSTRACT. During conjugation of the hypotrich ciliate Paraurostyla weissei , the two partners fuse to form a transient dedifferentiated stage, the zygocyst, which later redifferentiates into a vegetative cell. Immunocytochemical studies have been performed to follow the deployment of microtubules and basal bodies during the entire cycle of conjugation. They show that a superficial lattice persists during the whole zygocyst stage, after most of the infraciliature of the exconjugants has been disassembled. These superficial microtubules display different immunocytochemical properties in the mature zygocyst and during its morphogenesis, suggesting that some transient chemical modifications of the microtubules are associated with the morphogenetic activity. In the zygocyst, the superficial microtubules retain the specific orientation characteristic of the ventral and the dorsal sides of the recipient cell, respectively. In the course of subsequent morphogenesis of the zygocyst, these specific cellular territories differentiate into the ventral and dorsal sides of the new cell. Although our experiments do not resolve the question of whether superficial microtubules play an active or merely a passive role in the transmission of surface pattern, they show that no complete breakdown in cell polarity occurs, even through a profound dedifferentiated stage. Thus, the overall surface pattern appears to be retained, in a simplified form, through the conjugation cycle.  相似文献   

12.
The concentration of intracellular free calcium ions in the follicle wall cells and in the follicle cells of Rana temporaria in Ringer solution is 150 +/- 10 and in the follicle wall cells of Xenopus laevis, 220 +/- 10 nM. In a chloride-free saline, its concentration in the same cells is 2.5-3 times that in Ringer solution. Voltage-dependent Ca(2+)-channel blockers diltiazem and verapamil (100 microM) reduce the level of intracellular free calcium ions in R. temporaria follicle wall cells cultivated in a chloride-free saline to 170 +/- 20 nM, which practically does not differ from the level in Ringer solution. Inhibitors (100 microM) decrease the rate of "spontaneous" maturation of R. temporaria follicle-enclosed oocytes both in chloride-free and Ringer solutions. It was concluded that an increased level of intracellular free calcium ions in the follicle cells, among other factors, may determine the stimulating effect of the medium (Ringer or chloride-free solution) on "spontaneous" maturation of follicle-enclosed amphibian oocytes. Voltage-dependent calcium channels appear to be involved in Ca2+ influx into the cells.  相似文献   

13.
Apoptosis is known to play a critical role in development and homeostasis in metazoans. Although apoptotic responses vary widely among cell types, the underlying mechanisms responsible for these differences are not known. In order to understand the molecular basis for these differences, we have studied a cell culture model comparing hepatoma cells to dedifferentiated cell lines derived from them. We recently reported evidence suggesting that a common regulatory locus affects both liver-specific function and sensitivity to lipopolysaccharide (LPS)-mediated apoptosis. Here, we show that dedifferentiated hepatoma cells undergo apoptosis in response to multiple compounds, including sorbitol (to induce hyperosmotic shock), TNF alpha and the microtubule damaging agent vinblastin. In contrast, the hepatoma parental cells fail to undergo apoptosis in response to any of the compounds tested. Further analysis of LPS-mediated cell death found that antioxidants N-acetylcysteine and alpha-tocopherol partially prevented apoptosis. Lastly, evidence is presented showing that LPS-mediated cell death of the hepatoma variant cell lines is caspase-dependent. These results suggest that pathways dictating hepatic phenotype also affect general cellular survival mechanisms in response to multiple agents. The dedifferentiated cells provide a model to examine the influence of cell-type specific expression on apoptotic signaling.  相似文献   

14.
We examined human bone marrow mesenchymal stem cells by applying real-time quantitative polymerase chain reaction (PCR) (RT-PCR) technology and electron-microscopic techniques. Our RT-PCR demonstrated that the values of peroxisome proliferation-activated receptor gamma2 (PPARgamma2) and lipoprotein lipase (LPL) mRNA dramatically increased according to adipogenic stimulation. The expressions of both PPARgamma2 and LPL mRNA were significantly reduced ( P<0.01) and almost disappeared after stimulation had ceased. The expressions of both genes, however, increased again by stimulation even though the cells were in a dedifferentiated state for a month. In the ultrastructural study, over 80% of the cells proceeded into morphologically well-developed adipocytes at the 12th day of induction/maintenance which were packed with lipid droplets and clusters. In the next process these lipid products were excreted from the cell bodies and the peripheral small parts containing numerous droplets were torn from the greater parts, which stuck tightly to each other and adhered to culture dishes. Adipocytes were not detected in the culture media during the final stage. The total cell number was equal to and over 90% of the cells dedifferentiated into fibroblast-like stem cells during the final maintenance period of 1 month. Furthermore the dedifferentiated cells quickly differentiated again into adipocytes by stimulation even if they were quiescent for 1 month. Thus we conclude that mesenchymal stem cells have strong reversibility from both the genetic and morphological points of view.  相似文献   

15.
16.
The frog tongue was perfused through its artery with a Ringer solution using a peristaltic pump, and a method was developed to record stable intracellular receptor potentials of taste cells. Perfusing at 0.05 ml/min with a Ringer solution containing 5% dextran did not cause tongue edema, but perfusing at the same rate with Ringer without dextran caused edema. After perfusion at 0.05 ml/min with 100 mM K Ringer, the membrane potential of taste cells gradually decreased and reached a constant level in about 30 min, indicating that the intercellular fluid of the tongue could be replaced within this time period. While the artery of the frog tongue was perfused at 0.05 ml/min with Ringer containing 5% dextran, intracellular receptor potentials of taste cells elicited by four basic taste stimuli (1 M NaCl, 10 mM quinine-HCl (Q-HCl), 1 mM acetic acid and 1 M galactose) were similar to those obtained from the control taste cells under normal blood flow.  相似文献   

17.
Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK), by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models.  相似文献   

18.
The cell cycle kinetic characteristics of chick endochondral chondrocytes differentiating in vitro were studied by flow cytometry. In addition, the synthesis of type I and type X collagens of the same cells was evaluated by immunoprecipitation. Dedifferentiated cells, derived from chick embryo tibiae and grown attached to a substratum, were characterized by type I collagen synthesis, a high growth fraction (GF = 0.94), minimal cell loss factor (phi = 0.02), and a total cell cycle time of the proliferating cells of about 17 h (tG1 = 8 h, tS = 5 h, and tG2 + M = 4 h). Transfer of dedifferentiated cells to suspension culture on agarose-coated dishes induced differentiation to hypertrophic chondrocytes. These were characterized by type X collagen synthesis, a low growth fraction (GF = 0.52), maximal cell loss factor (phi = 1.0), and a total cell cycle time of the proliferating cells of about 73 h (tG1 = 53 h, tS = 12 h, and tG2 + M = 8 h). The transition from dedifferentiated chondrocytes to hypertrophic chondrocytes was accompanied by large increases of the duration of all the cell cycle phases and of the number of quiescent and degenerating cells. Associated with these alterations in cell cycle kinetics was a switch from type I to type X collagen synthesis. Further preliminary data suggest that the population of differentiating chondrocytes (a state between dedifferentiated and hypertrophic chondrocytes) comprises a heterogeneous population of fast and slow growing cells.  相似文献   

19.
In general, the electrochemical characteristics of solid/liquid or liquid/liquid interfaces are highly nonlinear, i.e., the capacitance changes markedly according to the applied voltage. In this paper, we propose a novel method for evaluating these nonlinear characteristics quantitatively. That is, a sinusoidal voltage source is applied to a test solution and the waveform of the output current is analyzed by Fourier transformation. It is shown theoretically that higher harmonic components in the Fourier transformation afford us useful information on nonlinear behavior. It is stressed that our technique is entirely different from the classical impedance method, i.e., nonlinear components of the impedance can be evaluated in our method, having been ignored previously in the classical impedance measurement. As an application of this method, we have studied the effect of taste compounds on the intensities of the higher harmonics, using an electrochemical cell containing an aqueous solution of sodium oleate. It has been found that the intensities of the higher harmonics exhibit characteristic changes upon the addition of taste compounds, the change being dependent upon the taste category. The characteristic response to taste compounds in the electrochemical nonlinearity is discussed in relation to the experimental trend of the dynamic isotherm for oleic acid at an air/water interface.  相似文献   

20.
The process of adsorption of bovine serum albumin onto a platinum electrode was monitored through the measurement of a nonlinear electrochemical property. The principle of the new method is that a sinusoidal voltage source is applied to a test solution and the waveform of the output current is analyzed by Fourier transformation. It was found that the intensities of the higher harmonics in the Fourier transformation change depending on the concentration of albumin and with time. From the higher harmonics, voltage dependence of the capacitance was quantitatively evaluated. The change of the state of albumin adsorbed onto the platinum plate was also monitored from the pattern of 'crack' of adsorbed albumin by using scanning electron microscopy. These results were discussed in relation to the mechanism of bimodal adsorption of albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号