首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Global patterns in belowground communities   总被引:9,自引:0,他引:9  
Although belowground ecosystems have been studied extensively and soil biota play integral roles in biogeochemical processes, surprisingly we have a limited understanding of global patterns in belowground biomass and community structure. To address this critical gap, we conducted a meta-analysis of published data (> 1300 datapoints) to compare belowground plant, microbial and faunal biomass across seven of the major biomes on Earth. We also assembled data to assess biome-level patterns in belowground microbial community composition. Our analysis suggests that variation in microbial biomass is predictable across biomes, with microbial biomass carbon representing 0.6–1.1% of soil organic carbon ( r 2 = 0.91) and 1–20% of total plant biomass carbon ( r 2 = 0.42). Approximately 50% of total animal biomass can be found belowground and soil faunal biomass represents < 4% of microbial biomass across all biomes. The structure of belowground microbial communities is also predictable: bacterial community composition and fungal : bacterial gene ratios can be predicted reasonably well from soil pH and soil C : N ratios respectively. Together these results identify robust patterns in the structure of belowground microbial and faunal communities at broad scales which may be explained by universal mechanisms that regulate belowground biota across biomes.  相似文献   

3.
Phytosociological analysis of savanna and forb-rich communities in the Pinar del Rio Province was done in the area of Remates de Guane; one locality lies on the seashore in the western part of the province. Altogether six associations were distinguished. Five of them, viz.Sclerio curtissii-Centelletum erectae, Schultezio guianensis-Rhynchosporetum fascicularis, Cassio diphyllae-Hypericetum stypheloidis, Polygalo squamifoliae-Dichromenetum seslerioidis andPhyllantho juncei-Aristidetum, all newly described in this paper, are classified into the order ofAcoelorapho-Colpothrinacetalia Bal.-Tul. inBal.-Tul. etCapote 1985 with two alliances. One association, thePaspalo debilis-Asteretum grisebachii Bal.-Tul. etCapote 1992, was put into the order ofAsteretalia grisebachii Bal.-Tul. inBal.-Tul. etCapote 1992 with one alliance bound to inland moving dunes. The plant composition reflects soil quality, above all the water regime. Very interesting is the presence of theByrsonimo crassifoliae-Andropogonetalia teneris-species in the association ofPolygalo-Dichromeneteum seslerioidis indicating the rich presence of stones in the upper part of the soil profile.  相似文献   

4.
Root herbivory affects plant performance, but the effects are not well understood. We tested the effects of the vertical distribution of a root-feeding beetle larva (Anomala cuprea) by restricting its access to the top, middle, or bottom zone in pots of perennial ryegrass (Lolium perenne) or by allowing unrestricted access. We predicted that plant mortality, biomass, and biomass allocation should change with the zone of root herbivory, because both the magnitude of root loss and the consequences of such loss are specific to the point of damage. Seven of nine plants died in each treatment in which the larvae had access to the top zone. In contrast, no plants died when larvae occupied the middle or bottom zones. Plants were killed when the larvae grazed the root base and severed the shoots from the roots. Moreover, total plant biomass and biomass allocation to roots were significantly lower when the larvae were confined to the top and middle feeding zones. The greatest number of roots were removed when the larvae occupied the top feeding zone. Thus, the vertical distribution of a belowground herbivore is crucially important to plant fate. In nature, most belowground herbivores are concentrated near the soil surface, and thus the effects of belowground herbivory are often more severe than the effects of aboveground herbivory.  相似文献   

5.
6.
Intra- and interspecific plant-plant interactions are fundamental to patterns of community assembly and to the mixture effects observed in biodiversity studies. Although much research has been conducted at the species level, very little is understood about how genetic variation within and among interacting species may drive these processes. Using clones of both Solidago altissima and Solidago gigantea, we found that genotypic variation in a plant's neighbours affected both above- and belowground plant traits, and that genotype by genotype interactions between neighbouring plants impacted associated pollinator communities. The traits for which focal plant genotypic variation explained the most variation varied by plant species, whereas neighbour genotypic variation explained the most variation in coarse root biomass. Our results provide new insight into genotypic and species diversity effects in plant-neighbour interactions, the extended consequences of diversity effects, and the potential for evolution in response to competitive or to facilitative plant-neighbour interactions.  相似文献   

7.
Woody plants in an African Burkea africana-Ochna pulchra savanna on deep sandy soil were found to have characteristically bimorphic root systems. The shallow lateral root component was often well developed and roots extended up to seven times the extent of the plant canopy in several species. Exponential tapering of lateral roots was found in Terminalia sericea. The wide-ranging roots, together with the high degree of multispecies root system interpenetration, result in the so-called, open grassy areas in the savanna mosaic often containing a competitively significant woody plant component. Root systems of Ochna pulchra were found to be relatively specialized and included: negatively geotropic, superficial roots; sinker roots to bedrock; high suckering response to damage in roots; belowground lignotuber-type organs; and sustained subterranean interconnections between some aboveground stems. These features are likely to contribute substantially to the resilience of this plant species to various climatic and veld management stress factors. Root/shoot mass ratios averaged unity but depended on plant size and aboveground growth form in Ochna pulchra. The dependence of these ratios on sizes of plant also applied to plant clones. Initiation of root tip growth occurred in early summer in one year and late spring in another. Main root tip growth occurred in late summer and early autumn, well after completion of most growth of leafy shoots in spring. It is suggested that some active uptake of water and nutrients by non-extending roots allows this form of phased growth in the plant. In an analysis of the seasonal growth of individual root tip systems, it was clear that transitory states of rest occur in fine root development but that these are far more frequent in the branching (and hence proliferation) of roots than in the continuing development of any root axis.Nomenclature follows the present system of the Botanical Research Institute, Pretoria, and the Flora of Southern Africa.I thank M.D. Panagos, P.S. Carr and J. Steyn for assistance at various stages of this work.  相似文献   

8.
Question: Optimal partitioning and isometric allocation are two important hypotheses in plant biomass allocation. We tested these two hypotheses at the community level, using field observations from Tibetan grasslands. Location: Qinghai‐Tibetan Plateau, China. Methods: We investigated allocation between above‐ and belowground biomass in alpine grasslands and its relationship with environmental factors using data collected from 141 sites across the plateau during 2001‐2005. We used reduced major axis (RMA) regression and general linear models (GLM) to perform data analysis. Results: The median values of aboveground biomass (MA), belowground biomass (MB), and root:shoot (R:S) ratio in alpine grasslands were 59.7, 330.5 g m?2, and 5.8, respectively. About 90% of total root biomass occurred in the top 30 cm of soil, with a larger proportion in the alpine meadow than in the alpine steppe (96 versus 86%). As soil nitrogen and soil moisture increased, both MA and MB increased, but R:S ratio did not show a significant change. MA scaled as 0.92 the power of MB, with 95% confidence intervals of 0.82‐1.02. The slope of the isometric relationship between log MA and log MB did not differ significantly between alpine steppe and alpine meadow. The isometric relationship was also independent of soil nitrogen and soil moisture. Conclusions: Our results support the isometric allocation hypothesis for the MA versus MB relationship in Tibetan grasslands.  相似文献   

9.
《植物生态学报》2017,41(5):585
Biomass allocations between aboveground and belowground organs provide pivotal information for connecting aboveground productivity and belowground carbon sequestration. As accurate measurement of belowground biomass is essential for determining the biomass allocation, we first reviewed the methods in quantifying belowground biomass and their merits. We then presented the major advances on plant biomass allocations between aboveground and belowground organs, as well as the potential drivers such as precipitation, warming, atmospheric CO2 concentration, and nitrogen deposition. We finally provided a list of challenges in studying belowground biomass allocation for the future. This review has important implications for studies on carbon cycling in grassland ecosystems under the changing climate.  相似文献   

10.
Interactions between above‐ and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above‐ and belowground invertebrate herbivores which alter plant community diversity and biomass, in turn affect soil nematode communities. We test the hypotheses that insect herbivores 1) alter soil nematode diversity, 2) stimulate bacterial‐feeding and 3) reduce plant‐feeding nematode abundances. In a full factorial outdoor mesocosm experiment we introduced grasshoppers (aboveground herbivores), wireworms (belowground herbivores) and a diverse soil nematode community to species‐rich model plant communities. After two years, insect herbivore effects on nematode diversity and on abundance of herbivorous, bacterivorous, fungivorous and omni‐carnivorous nematodes were evaluated in relation to plant community composition. Wireworms did not affect nematode diversity despite enhanced plant diversity, while grasshoppers, which did not affect plant diversity, reduced nematode diversity. Although grasshoppers and wireworms caused contrasting shifts in plant species dominance, they did not affect abundances of decomposer nematodes at any trophic level. Primary consumer nematodes were, however, strongly promoted by wireworms, while community root biomass was not altered by the insect herbivores. Overall, interaction effects of wireworms and grasshoppers on the soil nematodes were not observed, and we found no support for bottom‐up control of the nematodes. However, our results show that above‐ and belowground insect herbivores may facilitate root‐feeding rather than decomposer nematodes and that this facilitation appears to be driven by shifts in plant species composition. Moreover, the addition of nematodes strongly suppressed shoot biomass of several forb species and reduced grasshopper abundance. Thus, our results suggest that nematode feedback effects on plant community composition, due to plant and herbivore parasitism, may strongly depend on the presence of insect herbivores.  相似文献   

11.
Poeplau  Christopher  Germer  Kai  Schwarz  Kai-Uwe 《Plant and Soil》2019,440(1-2):119-133
Plant and Soil - Belowground carbon (C) inputs are a major source of soil organic carbon (SOC) in terrestrial ecosystems, and substrate C:N ratios drive SOC stabilisation. In perennial systems,...  相似文献   

12.
Above–belowground (AG–BG) studies typically focus on plant‐mediated effects inflicted by living organisms. However, animal cadavers may also play an important role in AG–BG interactions. Here, we explore whether living and dead foliar‐feeding and soil‐dwelling invertebrates differentially affect plants and their associated AG and BG multitrophic communities. In a mesocosm study we separated effects of living and dead locusts (AG herbivores) and earthworms (BG detritivores) on experimental multitrophic communities consisting of eight plant species, an AG aphid and parasitoid community and a BG nematode community. We measured root and shoot biomass and determined plant community composition and densities of aphids, parasitoids and nematodes. Living locusts decreased total shoot and root biomass in the mesocosms, whereas living earthworms enhanced total root biomass. Cadavers of both invertebrates strongly increased total root and shoot biomass, and changed the plant community composition mainly via enhanced growth of grasses. Earthworm cadavers affected plant biomass and community composition more strongly than their living counterparts, while this was reversed for locusts. Structural equation models showed that aphids and parasitoids were influenced via changes in plant community composition. Nematode densities in the soil, especially those of bacterivorous and entomopathogenic nematodes, were strongly increased by dead invertebrates, but unaffected by living ones. We conclude that effects of invertebrates on plant growth and densities of AG and BG organisms strongly depend on whether the invertebrates are dead or alive. Remarkably, invertebrate cadavers may inflict even stronger effects than their living counterparts. Hence, our study reveals an important, but often neglected, role of animal cadavers in AG–BG studies.  相似文献   

13.
Sun  Yuanfeng  Wang  Yupin  Yan  Zhengbing  He  Luoshu  Ma  Suhui  Feng  Yuhao  Su  Haojie  Chen  Guoping  Feng  Yinping  Ji  Chengjun  Shen  Haihua  Fang  Jingyun 《Journal of plant research》2022,135(1):41-53

Above- and belowground biomass allocation is an essential plant functional trait that reflects plant survival strategies and affects belowground carbon pool estimation in grasslands. However, due to the difficulty of distinguishing living and dead roots, estimation of biomass allocation from field-based studies currently show large uncertainties. In addition, the dependence of biomass allocation on plant species, functional type as well as plant density remains poorly addressed. Here, we conducted greenhouse manipulation experiments to study above- and belowground biomass allocation and its density regulation for six common grassland species with different functional types (i.e., C3 vs C4; annuals vs perennials) from temperate China. To explore the density regulation on the biomass allocation, we used five density levels: 25, 100, 225, 400, and 625 plant m?2. We found that mean root to shoot ratio (R/S) values ranged from 0.04 to 0.92 across the six species, much lower than those obtained in previous field studies. We also found much lower R/S values in annuals than in perennials (C. glaucum and S. viridis vs C. squarrosa, L. chinensis, M. sativa and S. grandis) and in C4 plants than in C3 plants (C. squarrosa vs L. chinensis, M. sativa and S. grandis). In addition to S. grandis, plant density had significant effects on the shoot and root biomass fraction and R/S for the other five species. Plant density also affected the allometric relationships between above- and belowground biomass significantly. Our results suggest that R/S values obtained from field investigations may be severely overestimated and that R/S values vary largely across species with different functional types. Our findings provide novel insights into approximating the difficult-to-measure belowground living biomass in grasslands, and highlight that species composition and intraspecific competition will regulate belowground carbon estimation.

  相似文献   

14.
Aims Belowground to aboveground biomass (BGB/AGB) ratio is a highly valued parameter of the terrestrial carbon cycle and productivity. However, it remains far from clear whether plant biomass partitioning to aboveground and belowground is isometric (equal partitioning) or allometric (unequal partitioning) at community levels and what factors are necessary in order to regulate the partitioning. This study aimed to comprehensively find out the patterns of biomass partitioning and their regulatory factors across forests in China.Methods The data of AGB and BGB were compiled from 1542 samples for communities across forests in China. Standardized major axis regression was conducted to examine whether AGB and BGB were allocated isometrically or allometrically at a community level. Redundancy analysis was used to analyze the relationships of BGB/AGB ratio with climatic factors and soil properties.Important findings We found that the slopes of the relationship between logAGB and logBGB were not always comparable to 1.0 (isometric allocation) at community levels, including primary forest, secondary forest, and planted forest. Meanwhile, samples in clay, loam, and sand soil types also presented the same phenomenon. Furthermore, the radically different allocations of AGB and BGB were found in northern and southern China. Environmental factors totally explained 3.86% of the variations in the BGB/AGB ratio at the community level, which include the mean annual precipitation, mean annual temperature, potential water deficit index, soil carbon content, soil nitrogen content, soil clay, soil loam, soil sand, soil pH, and soil bulk density. In addition, the environmental factors also have effects on the BGB/AGB ratio in other categories. The patterns revealed in this study are helpful for better understanding biomass partitioning and spreading the carbon circle models.  相似文献   

15.
Biodiversity loss, an important consequence of agricultural intensification, can lead to reductions in agroecosystem functions and services. Increasing crop diversity through rotation may alleviate these negative consequences by restoring positive aboveground–belowground interactions. Positive impacts of aboveground biodiversity on belowground communities and processes have primarily been observed in natural systems. Here, we test for the effects of increased diversity in an agroecosystem, where plant diversity is increased over time through crop rotation. As crop diversity increased from one to five species, distinct soil microbial communities were related to increases in soil aggregation, organic carbon, total nitrogen, microbial activity and decreases in the carbon‐to‐nitrogen acquiring enzyme activity ratio. This study indicates positive biodiversity–function relationships in agroecosystems, driven by interactions between rotational and microbial diversity. By increasing the quantity, quality and chemical diversity of residues, high diversity rotations can sustain soil biological communities, with positive effects on soil organic matter and soil fertility.  相似文献   

16.
Little is known about how small-scale variation in neighbor biomass can influence the strength of root competition experienced by an individual plant. In this study, modified root exclusion tubes were used to vary the accessibility of the soil space surrounding Amaranthus retroflexus target plants to the neighboring plants. A gradient of root accessibility was created by drilling varying numbers of holes into standard root exclusion tubes, made of 15 cm diameter PVC pipe. Belowground competitive intensity, defined as biomass reduction due to root interactions alone, relative to growth in the absence of neighbors, was then measured along the resulting gradient of neighbor root densities. At low neighbor root abundances the strength of belowground competition was proportional to neighbor root biomass, consistent with prior evidence that belowground competition is symmetric. If belowground competition were asymmetric, neighbor roots should have had little effect on target plants when they are rare relative to those of the target plant. At higher neighbor root abundances, belowground competitive intensity should increase rapidly. The strong relationship found between neighbor root biomass and belowground competitive intensity suggests relatively small variations in root biomass could lead to large variations in belowground competition. Reduced belowground competition in areas with low root biomass could have important implications for the establishment and growth of poor belowground competitors, suggesting a mechanism by which species coexistence may occur despite extremely intense root competition.  相似文献   

17.
Zhou  Yong  Watts  Stephen E.  Boutton  Thomas W.  Archer  Steven R. 《Plant and Soil》2019,434(1-2):263-269
Plant and Soil - Mechanisms and transporters responsible for Ni uptake in plants are largely unknown. To characterize Ni uptake mechanisms in Ni hyperaccumulators, we compared the effects of...  相似文献   

18.
西藏那曲地区高寒草地地下生物量   总被引:29,自引:6,他引:29  
鄢燕  张建国  张锦华  范建容  李辉霞 《生态学报》2005,25(11):2818-2823
矮嵩草草甸、藏北嵩草草甸及紫花针茅草原是那曲地区主要的草地类型,通过对其地下生物量的分布特征、地下/地上生物量的关系及其对土壤环境影响的研究发现:(1)这三类植物群落的地下生物量表现为总的T字形趋势下的锯齿状分布,主要分布在0~10cm的草皮层中,而且不同的退化草地,其地下的生物量也不同;(2)各群落的地下生物量和地上生物量密切相关,相关性均呈显著正相关。地下/地上生物量的比值越大,地上生物量就越高。地上生物量的变化不大,而地下生物量变化显著;(3)在高山草甸土中,矮嵩草草甸的地下生物量和土壤的有机质,全N,碱解N的含量及土壤的容重呈相关关系,而与其他的土壤因子相关性不显著。(4)各群落的地下生物量的垂直分布特征及与土壤环境的关系是植物长期适宜高寒生境条件的结果和反映。  相似文献   

19.
Di Carlo G  Kenworthy WJ 《Oecologia》2008,158(2):285-298
Several studies addressed aboveground biomass recovery in tropical and subtropical seagrass systems following physical disturbance. However, there are few studies documenting belowground biomass recovery despite the important functional and ecological role of roots and rhizomes for seagrass ecosystems. In this study, we compared the recovery of biomass (g dry weight m(-2)) as well as the biomass recovery rates in ten severely disturbed multi-species seagrass meadows, after the sediments were excavated and the seagrasses removed. Three sites were located in the tropics (Puerto Rico) and seven in the subtropics (Florida Keys), and all were originally dominated by Thalassia testudinum. Total aboveground biomass reached reference values at four out of ten sites studied, two in the Florida Keys and two in Puerto Rico. Total belowground biomass was lower at the disturbed locations compared to the references at all sites, apart from two sites in the Florida Keys where the compensatory effect of opportunistic species (Syringodium filiforme and Halodule wrightii) was observed. The results revealed large variation among sites in aboveground and belowground biomass for all species, with higher aboveground recovery than belowground for T. testudinum. Recovery rates for T. testudinum were highly variable across sites, but a general trend of faster aboveground than belowground recovery was observed. Equal rates between aboveground and belowground biomass were found for opportunistic species at several sites in the Florida Keys. These results indicate the importance of belowground biomass when assessing seagrass recovery and suggest that the appropriate metric to assess seagrass recovery should address belowground biomass as well as aboveground biomass in order to evaluate the full recovery of ecological services and functions performed by seagrasses. We point out regional differences in species composition and species shifts following severe disturbance events and discuss ecological implications of gap dynamics in multi-species seagrass meadows.  相似文献   

20.
Summary The output distribution function of a non-linear switching element with a Poissonian sequence of impulses at the input is calculated by a straightforward method. The dead time of the element is taken into account. Some limiting properties of this distribution and its mean value are studied.The present research has been sponsored in part by the Air Force Avionics Lab., Research and Technology Div., Wright-Patterson Air Force, Air Force System Command — U.S.A.F. — Government of United States of America, Contract no. AF 33(615)-2786.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号