首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA ligases catalyze the joining of strand breaks in the phosphodiester backbone of duplex DNA and play essential roles in DNA replication, recombination, repair, and maintenance of genomic integrity. Three mammalian DNA ligase genes have been identified, and their corresponding ligases play distinct roles in DNA metabolism. DNA ligase III is proposed to be involved in the repairing of DNA single-strand breaks, but its precise role has not yet been demonstrated directly. To determine its role in DNA repair, cellular growth, and embryonic development, we introduced targeted interruption of the DNA ligase III (LIG3) gene into the mouse. Mice homozygous for LIG3 disruption showed early embryonic lethality. We found that the mutant embryonic developmental process stops at 8.5 days postcoitum (dpc), and excessive cell death occurs at 9.5 dpc. LIG3 mutant cells have relatively normal XRCC1 levels but elevated sister chromatid exchange. These findings indicate that DNA ligase III is involved in essential DNA repair activities required for early embryonic development and therefore cannot be replaced by other DNA ligases.  相似文献   

2.
3.
4.
This review summarizes the progress made in establishing essential roles for boron in human physiology and assesses that progress in view of criteria for essentiality of elements. The evidence to date suggests that humans and at least some higher animals may use boron to support normal biological functions. These include roles in calcium metabolism, bone growth and maintenance, insulin metabolism, and completion of the life cycle. The biochemical mechanisms responsible for these effects are poorly understood but the nature of boron biochemistry suggests further characterization of the cell signaling molecules capable of complexing with boron. Such characterization may provide insights into the biochemical function(s) of boron in humans.  相似文献   

5.
Copper plays important functional roles in bone metabolism and turnover. It is known that it is essential for normal growth and development of the skeleton in humans and in animals. Although at present the exact role that copper plays in bone metabolism is unknown, bone abnormalities are a feature of severe copper deficiency. Osteoblasts are derived from mesenchymal stem cells (MSCs) present in bone marrow stroma, which are able to differentiate into bone, adipocytes, and other cell phenotypes. Excess adipogenesis in postmenopausal women may occur at the expense of osteogenesis and, therefore, may be an important factor in the fragility of postmenopausal bone. The purpose of this study was to evaluate whether an increase of the extracellular concentration of copper affects the ability of MSCs to differentiate into osteoblasts or adipocytes. The results showed that copper modified both the differentiation and the proliferative activity of MSCs obtained from postmenopausal women. Copper (50 microM) diminished the proliferation rate of MSCs, increasing their ability to differentiate into the osteogenic and the adipogenic lineages. Copper induced a 2-fold increase in osteogenic differentiation of MSCs, measured as a increase in calcium deposition. Copper (5 and 50 microM) diminished the expression of alkaline phosphatase (50 and 80%, respectively), but induced a shift in the expression of this enzyme to earlier times during culture. Copper also induced a 1.3-fold increase in the adipogenic differentiation of MSCs. It is concluded that copper stimulates MSC differentiation, and that this is preferentially towards the osteogenic lineage.  相似文献   

6.
Accumulation of DNA damage caused by oxidative stress is thought to be one of the main contributors of human tissue aging. Trichothiodystrophy (TTD) mice have a mutation in the Ercc2 DNA repair gene, resulting in accumulation of DNA damage and several features of segmental accelerated aging. We used male TTD mice to study the impact of DNA repair on bone metabolism with age. Analysis of bone parameters, measured by micro-computed tomography, displayed an earlier decrease in trabecular and cortical bone as well as a loss of periosteal apposition and a reduction in bone strength in TTD mice with age compared to wild type mice. Ex vivo analysis of bone marrow differentiation potential showed an accelerated reduction in the number of osteogenic and osteoprogenitor cells with unaltered differentiation capacity. Adipocyte differentiation was normal. Early in life, osteoclast number tended to be increased while at 78 weeks it was significantly lower in TTD mice. Our findings reveal the importance of genome stability and proper DNA repair for skeletal homeostasis with age and support the idea that accumulation of damage interferes with normal skeletal maintenance, causing reduction in the number of osteoblast precursors that are required for normal bone remodeling leading to a loss of bone structure and strength.  相似文献   

7.
Understanding the metabolism of essential metalloelements and their role in tissue maintenance and function as well as the roles of essential metalloelement-dependent enzymes in responding to injury offers a new approach to preventing and/or treating radiation injury. This review presents the roles of some essential metalloelement-dependent enzymes in the maintenance and function of tissues and their responses to radiation injury and gives an account of the observed effects of nontoxic doses of essential metalloelement compounds on protection against radiation damage and its recovery. The radiolysis of chemical bonds and free radicals derived from oxygen accounts for the acute and chronic aspects of radiation injury. The recognized biochemical roles of essential metalloelements and their observed pharmacological effects predict the therapeutic usefulness of essential metalloelement complexes in the prevention and/or treatment of radiation injury. Copper complexes have radiation protection and radiation recovery activities and cause rapid recovery of immunocompetence and radiation-induced damage to cells and tissues. Recently, iron, manganese, and zinc complexes have also been found to prevent death in lethally irradiated mice. These pharmacological effects of essential metalloelement complexes can be understood to be due to facilitation of de novo synthesis of essential metalloelement-dependent enzymes which have roles in preventing the accumulation of pathological concentrations of oxygen radicals or repairing damage caused by radiation-induced bond homolysis. Essential metalloelement complexes offer a physiological approach to prevention and/or treatment of radiation injury.  相似文献   

8.
Is there a role for copper in neurodegenerative diseases?   总被引:2,自引:0,他引:2  
Copper is an essential metal in living organisms; thus, the maintenance of adequate copper levels is of vital importance and is highly regulated. Dysfunction of copper metabolism leading to its excess or deficiency results in severe ailments. Two examples of illnesses related to alterations in copper metabolism are Menkes and Wilson diseases. Several proteins are involved in the maintenance of copper homeostasis, including copper transporters and metal chaperones. In the last several years, the beta-amyloid-precursor protein (beta-APP) and the prion protein (PrP(C)), which are related to the neurodegenerative disorders Alzheimer and prion diseases respectively, have been associated with copper metabolism. Both proteins bind copper through copper-binding domains that also have been shown to reduce copper in vitro. Moreover, this ability to reduce copper is associated with a neuroprotective effect exerted by the copper-binding domain of both proteins against copper in vivo. In addition to a functional link between copper and beta-APP or PrP(C), evidence suggests that copper has a role in Alzheimer and prion diseases. Here, we review the evidence that supports both, the role of beta-APP and PrP(C), in copper metabolism and the putative role of copper in neurodegenerative diseases.  相似文献   

9.
The structural maintenance of chromosomes (SMC) family of proteins play essential roles in genomic stability. SMC heterodimers are required for sister-chromatid cohesion (Cohesin: Smc1 & Smc3), chromatin condensation (Condensin: Smc2 & Smc4), and DNA repair (Smc5 & Smc6). The SMC heterodimers do not function alone and must associate with essential non-SMC subunits. To gain further insight into the essential and DNA repair roles of the Smc5-6 complex, we have purified fission yeast Smc5 and identified by mass spectrometry the co-precipitating proteins, Nse1 and Nse2. We show that both Nse1 and Nse2 interact with Smc5 in vivo, as part of the Smc5-6 complex. Nse1 and Nse2 are essential proteins and conserved from yeast to man. Loss of Nse1 and Nse2 function leads to strikingly similar terminal phenotypes to those observed for Smc5-6 inactivation. In addition, cells expressing hypomorphic alleles of Nse1 and Nse2 are, like Smc5-6 mutants, hypersensitive to DNA damage. Epistasis analysis suggests that like Smc5-6, Nse1, and Nse2 function together with Rhp51 in the homologous recombination repair of DNA double strand breaks. The results of this study strongly suggest that Nse1 and Nse2 are novel non-SMC subunits of the fission yeast Smc5-6 DNA repair complex.  相似文献   

10.
Constant mechanical stress is essential for the maintenance of bone mass and strength, which is achieved through the cooperative functions of osteoblasts and osteoclasts. However, it has not been fully elucidated how these cell types mediate mechanical signals. Low-intensity pulsed ultrasound (LIPUS) therapy is a recently developed method for application of mechanical stress, and is used clinically to promote bone fracture healing. In the present study, we applied LIPUS to osteoblasts at different stages of maturation and analyzed their chemokine and cytokine expression. In comparison with their immature counterparts, mature osteoblasts expressed significantly higher levels of mRNAs for the receptor activator of nuclear factor kappa B ligand (RANKL), monocyte chemoattractant protein (MCP)-1, and macrophage-inflammatory protein (MIP)-1beta after a few hours of LIPUS treatment. Intriguingly, protein and mRNA expression of angiotensin II type 1 receptor (AT1), a known mechanoreceptor in cardiomyocytes, was detected in osteoblasts, and the level of expression increased significantly during cell maturation. Furthermore, LIPUS-induced extracellular signal-regulated kinase (ERK) phosphorylation and RANKL/chemokine expression was abrogated by a specific AT1 inhibitor. Thus, AT1 may play one of the essential roles in bone metabolism as a mechanoreceptor of osteoblasts.  相似文献   

11.
Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome.  相似文献   

12.
13.
Single-stranded DNA-binding proteins (SSBs) play vital roles in all aspects of DNA metabolism in all three domains of life and are characterized by the presence of one or more OB fold ssDNA-binding domains. Here, using the genetically tractable euryarchaeon Haloferax volcanii as a model, we present the first genetic analysis of SSB function in the archaea. We show that genes encoding the OB fold and zinc finger-containing RpaA1 and RpaB1 proteins are individually non-essential for cell viability but share an essential function, whereas the gene encoding the triple OB fold RpaC protein is essential. Loss of RpaC function can however be rescued by elevated expression of RpaB, indicative of functional overlap between the two classes of haloarchaeal SSB. Deletion analysis is used to demonstrate important roles for individual OB folds in RpaC and to show that conserved N- and C-terminal domains are required for efficient repair of DNA damage. Consistent with a role for RpaC in DNA repair, elevated expression of this protein leads to enhanced resistance to DNA damage. Taken together, our results offer important insights into archaeal SSB function and establish the haloarchaea as a valuable model for further studies.  相似文献   

14.
Telomeres and DNA damage checkpoints   总被引:6,自引:0,他引:6  
In all eukaryotic organisms, interruptions in duplex DNA molecules elicit a DNA damage response, which includes activation of DNA repair machineries and surveillance mechanisms, known as DNA damage checkpoints. Telomeres and double-strand breaks (DSBs) share the common feature of being physical ends of chromosomes. However, unlike DSBs, telomeres do not activate the DNA damage checkpoints and are usually protected from end-to-end fusions and other processing events that normally promote repair of DNA breaks. This indicates that they are shielded from being recognized and processed as DSBs. On the other hand, chromosome ends resemble damaged DNA, as several factors required for DNA repair and checkpoint networks play important roles in telomere length maintenance. Due to the critical role of both DNA damage checkpoints and telomere homeostasis in maintaining genetic stability and in counteracting cancer development, the knowledge of their interconnections is essential for our understanding of these key cellular controls.  相似文献   

15.
Telomere maintenance and DNA repair are crucial processes that protect the genome against instability. RTEL1, an essential iron-sulfur cluster-containing helicase, is a dominant factor that controls telomere length in mice and is required for telomere integrity. In addition, RTEL1 promotes synthesis-dependent strand annealing to direct DNA double-strand breaks into non-crossover outcomes during mitotic repair and in meiosis. Here, we review the role of RTEL1 in telomere maintenance and homologous recombination and discuss models linking RTEL1's enzymatic activity to its function in telomere maintenance and DNA repair.  相似文献   

16.
Copper is an essential element that is required for a variety of important cellular functions. Since not only copper deficiency but also excess of copper can seriously affect cellular functions, the cellular copper metabolism is tightly regulated. In brain, astrocytes appear to play a pivotal role in the copper metabolism. With their strategically important localization between capillary endothelial cells and neuronal structures they are ideally positioned to transport copper from the blood–brain barrier to parenchymal brain cells. Accordingly, astrocytes have the capacity to efficiently take up, store and to export copper. Cultured astrocytes appear to be remarkably resistant against copper-induced toxicity. However, copper exposure can lead to profound alterations in the metabolism of these cells. This article will summarize the current knowledge on the copper metabolism of astrocytes, will describe copper-induced alterations in the glucose and glutathione metabolism of astrocytes and will address the potential role of astrocytes in the copper metabolism of the brain in diseases that have been connected with disturbances in brain copper homeostasis.  相似文献   

17.
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.  相似文献   

18.
新生儿生长发育所需的微量元素主要从母乳中获得,微量元素参与了机体的许多生命活动,如酶的活性、细胞增殖及分化等。乳腺上皮细胞含有多种微量元素转运体系,如锌离子转运体系(Zip/ZnT)、铁离子转运体系(DMTl/FPN)和铜离子转运体系(Ctrl/ATP7)。在分泌乳汁的同时,这些转运蛋白对锌、铁、铜等微量元素的吸收、转运和分泌起着重要的作用。同时这些微量元素的转运及代谢受到多种因素的调控,使母乳中微量元素含量达到动态稳定,以满足新生儿生长发育各阶段对微量元素的需求。对近年来锌、铁、铜三种微量元素在乳腺上皮细胞内转运机制的研究进展进行综述。  相似文献   

19.
The trace metal copper is an essential cofactor for a number of enzymes that have critical roles in biological processes, but it is highly toxic when allowed to accumulate in excess of cellular needs. Consequently, homeostatic copper metabolism is maintained by molecules involved in copper uptake, distribution, excretion, and incorporation into copper-requiring enzymes. Previously, we reported that overexpression of the human or mouse Ctr1 copper transporter stimulates copper uptake in mammalian cells, and deletion of one Ctr1 allele in mice gives rise to tissue-specific defects in copper accumulation and in the activities of copper-dependent enzymes. To investigate the physiological roles for mammalian Ctr1 protein in cellular copper metabolism, we characterized wild type, Ctr1 heterozygous, and Ctr1 homozygous knock-out cells isolated from embryos obtained by the inter-cross of Ctr1 heterozygous mice. Ctr1-deficient mouse embryonic cells are viable but exhibit significant defects in copper uptake and accumulation and in copper-dependent enzyme activities. Interestingly, Ctr1-deficient cells exhibit approximately 30% residual copper transport activity that is saturable, with a K(m) of approximately 10 microm, with biochemical features distinct from that of Ctr1. These observations demonstrate that, although Ctr1 is critical for both cellular copper uptake and embryonic development, mammals possess additional biochemically distinct functional copper transport activities.  相似文献   

20.
Copper is an essential micronutrient for most organisms that is required as a cofactor for crucial copper-dependent enzymes encoded by both prokaryotes and eukaryotes. Evidence accumulated over several decades has shown that copper plays important roles in the function of the mammalian immune system. Copper accumulates at sites of infection, including the gastrointestinal and respiratory tracts and in blood and urine, and its antibacterial toxicity is directly leveraged by phagocytic cells to kill pathogens. Copper-deficient animals are more susceptible to infection, whereas those fed copper-rich diets are more resistant. As a result, copper resistance genes are important virulence factors for bacterial pathogens, enabling them to detoxify the copper insult while maintaining copper supply to their essential cuproenzymes. Here, we describe the accumulated evidence for the varied roles of copper in the mammalian response to infections, demonstrating that this metal has numerous direct and indirect effects on immune function. We further illustrate the multifaceted response of pathogenic bacteria to the elevated copper concentrations that they experience when invading the host, describing both conserved and species-specific adaptations to copper toxicity. Together, these observations demonstrate the roles of copper at the host–pathogen interface and illustrate why bacterial copper detoxification systems can be viable targets for the future development of novel antibiotic drug development programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号