首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colonic neoplasia is more frequent in the distal colon than in the proximal colon in spontaneous human disease and in carcinogen-induced tumors in rodents. The possibility that this may reflect regional differences in morphology and in proliferative responses to fasting and refeeding was explored in this study in rats. Scanning electron microscopy revealed that the density of colonic crypts was 36% higher in the distal than in the proximal colon, while light microscopy revealed that distal crypts had 70% more colonocytes than proximal crypts. Thus, the number of colonocytes per unit area in the distal colon is approximately twice that in the proximal colon. Proliferation was assessed by the uptake of bromodeoxyuridine in vivo and showed that regions of the distal colon had greater suppression of proliferation during fasting than the cecum, and greater enhancement of proliferation during refeeding than that observed in the cecum or the proximal colon. Changes in proliferation associated with fasting and refeeding were accompanied by changes in the concentrations of short chain fatty acids, but the data did not support the hypothesis of a direct relationship between increasing concentrations of short chain fatty acids and enhanced proliferation. Regional differences in morphology and proliferation could be relevant to the greater susceptibility of the distal colon to neoplasia.  相似文献   

2.
  • 1.1. The effects of fasting and fasting followed by refeeding on the activities of the oxidative pentose pathway (OPP) and the non-oxidative pentose pathway (NOPP) were estimated by the rate of production of 14CO2 from [l-14C] glucose in isolated rat colonocytes, and the production of hexose 6-phosphates from ribose 5-phosphate in rat colonic cytosols, respectively.
  • 2.2. The OPP activity in colonocytes from rats in the fasted state was 50% lower when compared to colonocytes from rats refed after a fast. This indicated induction of the rate-limiting enzyme of the OPP, glucose 6-P dehydrogenase (G6-PDH) in the latter instance. No effect on the maximal catalytic activity of the enzymes of the NOPP was seen in colonocytes from rats refed after a fast compared with colonocytes from rats in the fasted state.
  • 3.3. Isolated colonocytes obtained from the distal colon of rats refed after a fast, showed a significant decrease (30%) in OPP activity when incubated with 50 μ M dehydroepiandrosterone (DHEA). A similar degree of inhibition was seen with 10 mM butyrate (P <0.05). In contrast, using colonie cytosols, both DHEA and butyrate had no effect on the maximal catalytic activity of the NOPP.
  • 4.4. Intraperitoneal injection (i.p.) of DHEA in rats refed after a fast showed a significant increase in the maximal catalytic activity of the NOPP in the distal colon (46%; P <0.05). A similar elevation in the maximal catalytic activity of the NOPP was seen in the distal colon of DHEA treated pair-fed rats (43%; P < 0.05). No significant change was seen in maximal catalytic activity of the NOPP in colonocytes obtained from the proximal colon of DHEA treated rats in both ad libitum fed and pair-fed rats.
  • 5.5. DHEA administration is postulated to increase the maximal catalytic activity of the NOPP as a compensatory response to a lowered OPP activity. This increased potential for glucose flux through the NOPP can presumably replace the deficit in supply of phosphorylated sugars needed for the actively dividing colonocytes in the distal colon.
  相似文献   

3.
1. The effects of fasting and fasting followed by refeeding on the activities of the oxidative pentose pathway (OPP) and the tricarboxylic acid cycle (TCA) in isolated rat colonocytes were estimated by the rate of production of 14CO2 from [1-14C]glucose and [6-14C]glucose, respectively. 2. Refeeding after a fast induced a 2-3-fold increase in glucose flux through the OPP and TCA cycle and the degree of change was similar in colonocytes from the proximal and distal colon. 3. Butyrate at a concentration of 40 mM inhibited the OPP by 20-30% (P less than 0.05) but had no effect on the activity of the TCA cycle. Glutamine at a concentration of 2 mM decreased the glucose flux through both the OPP and the TCA cycle by 30-50% (P less than 0.05). 4. Production of 14CO2 from the oxidation of butyrate or glucose indicated that the former was 5-7 times more active in colonocytes from fasted rats. After refeeding, however, butyrate utilization was similar to fasting values in the proximal colon but significantly lower (P less than 0.05) in the distal colon.  相似文献   

4.
J R Moran  A Lyerly 《Life sciences》1985,36(26):2515-2521
To determine whether intestinal amino acid losses might occur during zinc deficiency, labeled aminoisobutyric acid was given parenterally to zinc deficient rats and to appropriate zinc-sufficient controls. After 24 hours, the aminoisobutyric acid loss into the intestinal lumen was measured by in situ perfusion of isolated intestinal segments under conditions of either net water absorption or water secretion. Net amino acid losses were larger in the jejunum of the zinc deficient rats and losses were exacerbated during net water secretion in the jejunum and colon segments. The contribution of amino acid losses to fecal nitrogen, particularly during osmotic diarrhea, may be important in the growth retardation of zinc deficiency. Further, these alterations may indicate defective enterocyte transport functions during severe deficiency.  相似文献   

5.
Skeletal effects of zinc deficiency in growing rats.   总被引:6,自引:0,他引:6  
There is ample evidence that zinc plays an important role in bone metabolism and zinc deficiency has been implicated as a risk factor in the development of osteoporosis. It was the aim of the present study to investigate the skeletal effects of alimentary zinc deficiency in growing rats using quantitative bone histomorphometry. Twenty-four male Sprague Dawley rats with a mean initial body weight of 101 +/- 2 g were allocated in two groups of 12 rats each and had free access to a semi-synthetic, casein-based, zinc-deficient diet (0.76 mg zinc/kg) or to the same diet supplemented with 60 mg zinc per kg. All rats were sacrificed 42 days after the start of the experiment and the right distal femur was removed for bone histomorphometry. Relative to controls (+Zn), the zinc-deficient rats (-Zn) had a significantly lower body weight and about an 80% reduction in plasma and femur zinc concentration. The histomorphometric evaluation of the distal femoral metaphysis showed that zinc deficiency led to a 45% reduction (p < 0.01) in cancellous bone mass and to a deterioration of trabecular bone architecture, with fewer and thinner trabeculae. The osteopenia in -Zn rats was accompanied by significant reductions in osteoid perimeter (-31%, p < 0.05), osteoblast perimeter (-30%, p < 0.05), and osteoclast number (-38%, p < 0.01) relative to +Zn controls. We conclude that zinc deficiency induced low turnover osteopenia in femoral cancellous bone of growing rats. These results support the hypothesis that zinc deficiency during growth may impair the accumulation of maximal bone mass in humans; additionally, they suggest that zinc deficiency may play a role as a risk factor in the pathogenesis of osteoporosis.  相似文献   

6.
The regulation of intracellular pH (pH(i)) in colonocytes of the rat proximal colon has been investigated using the pH-sensitive dye BCECF and compared with the regulation of pH(i) in the colonocytes of the distal colon. The proximal colonocytes in a HEPES-buffered solution had pH(i)=7.24+/-0.04 and removal of extracellular Na(+) lowered pH(i) by 0.24 pH units. Acid-loaded colonocytes by an NH(3)/NH(4)(+) prepulse exhibited a spontaneous recovery that was partially Na(+)-dependent and could be inhibited by ethylisopropylamiloride (EIPA). The Na(+)-dependent recovery rate was enhanced by increasing the extracellular Na(+) concentration and was further stimulated by aldosterone. In an Na(+)- and K(+)-free HEPES-buffered solution, the recovery rate from the acid load was significantly stimulated by addition of K(+) and this K(+)-dependent recovery was partially blocked by ouabain. The intrinsic buffer capacity of proximal colonocytes at physiological pH(i) exhibited a nearly 2-fold higher value than in distal colonocytes. Butyrate induced immediate colonocyte acidification that was smaller in proximal than in distal colonocytes. This acidification was followed by a recovery phase that was both EIPA-sensitive and -insensitive and was similar in both groups of colonocytes. In a HCO(3)(-)/CO(2)-containing solution, pH(i) of the proximal colonocytes was 7.20+/-0.04. Removal of external Cl(-) caused alkalinization that was inhibited by DIDS. The recovery from an alkaline load induced by removal of HCO(3)(-)/CO(2) from the medium was Cl(-)-dependent, Na(+)-independent and blocked by DIDS. Recovery from an acid load in EIPA-containing Na(+)-free HCO(3)(-)/CO(2)-containing solution was accelerated by addition of Na(+). Removal of Cl(-) inhibited the effect of Na(+). In summary, the freshly isolated proximal colonocytes of rats express Na(+)/H(+) exchanger, H(+)/K(+) exchanger ((H(+)-K(+))-ATPase) and Na(+)-dependent Cl(-)/HCO(3)(-) exchanger that contribute to acid extrusion and Na(+)-independent Cl(-)/HCO(3)(-) exchanger contributing to alkali extrusion. All of these are likely involved in the regulation of pH(i) in vivo. Proximal colonocytes are able to maintain a more stable pH(i) than distal cells, which seems to be facilitated by their higher intrinsic buffer capacity.  相似文献   

7.
Colorectal cancer (CRC) screening tests often have a trade-off between efficacy and patient acceptability/cost. Fecal tests (occult blood, methylation) engender excellent patient compliance but lack requisite performance underscoring the need for better population screening tests. We assessed the utility of microRNAs (miRNAs) as markers of field carcinogenesis and their potential role for CRC screening using the azoxymethane (AOM)-treated rat model. We found that 63 miRNAs were upregulated and miR-122, miR-296-5p and miR-503# were downregulated in the uninvolved colonic mucosa of AOM rats. We monitored the expression of selected miRNAs in colonic biopsies of AOM rats at 16 weeks and correlated it with tumor development. We noted that the tumor bearing rats had significantly greater miRNA modulation compared to those without tumors. The miRNAs showed good diagnostic performance with an area under the receiver operator curve (AUROC) of >0.7. We also noted that the miRNA induction in the colonic mucosa was mirrorred in the mucus layer fecal colonocytes isolated from AOM rat stool and the degree of miRNA induction was greater in the tumor bearing rats compared to those without tumors. Lastly, we also noted significant miRNA modulation in the Pirc rats- the genetic model of colon carcinogenesis, both in the uninvolved colonic mucosa and the fecal colonocytes. We thus demonstrate that miRNAs are excellent markers of field carcinogenesis and could accurately predict future neoplasia. Based on our results, we propose an accurate, inexpensive, non-invasive miRNA test for CRC risk stratification based on rectal brushings or from abraded fecal colonocytes.  相似文献   

8.
The zinc sensing receptor, a link between zinc and cell signaling   总被引:3,自引:0,他引:3  
Zinc is essential for cell growth. For many years it has been used to treat various epithelial disorders, ranging from wound healing to diarrhea and ulcerative colon disease. The physiological/molecular mechanisms linking zinc and cell growth, however, are not well understood. In recent years, Zn2+ has emerged as an important signaling molecule, activating intracellular pathways and regulating cell fate. We have functionally identified an extracellular zinc sensing receptor, called zinc sensing receptor (ZnR), that is specifically activated by extracellular Zn2+ at physiological concentrations. The putative ZnR is pharmacologically coupled to a Gq-protein which triggers release of Ca2+ from intracellular stores via the Inositol 1,4,5-trisphosphate (IP3) pathway. This, in turn results in downstream signaling via the MAP and phosphatidylinositol 3-kinase (PI3 kinase) pathways that are linked to cell proliferation. In some cell types, e.g., colonocytes, ZnR activity also upregulates Na+/H+ exchange, mediated by Na+/H+ exchanger isoform 1 (NHE1), which is involved in cellular ion homeostasis in addition to cell proliferation. Our overall hypothesis, as discussed below, is that a ZnR, found in organs where dynamic zinc homeostasis is observed, enables extracellular Zn2+ to trigger intracellular signaling pathways regulating key cell functions. These include cell proliferation and survival, vectorial ion transport and hormone secretion. Finally, we suggest that ZnR activity found in colonocytes is well positioned to attenuate erosion of the epithelial lining of the colon, thereby preventing or ameliorating diarrhea, but, by signaling through the same pathways, a ZnR may enhance tumor progression in neoplastic disease.  相似文献   

9.
There is an increasing amount of evidence suggesting that T cell deficiency contributes to tumor development. However, it is unclear whether T cell deficiency leads to liver and colon carcinogenesis. The aim of this study was to investigate the role of T cells on liver and colon carcinogenesis. Athymic F344/N Jcl-rnu/- (nu/nu) rats and euthymic F344/N Jcl-rnu/+(nu/+) rats were administered the carcinogen azoxymethane (AOM) at a dose of 15 mg/kg body wt once a week for 2 weeks. At 48 weeks after the second carcinogen treatment, the rats were sacrificed, and livers and colons were examined. Apoptosis and cell proliferation were evaluated by DNA fragmentation and proliferating cell nuclear antigen assays, respectively. Wild-type p53 and members of the Jun and Fos oncogene families were detected by Western blotting. AOM treatment induced 100% liver tumor and 63.6% colon tumor incidence in T cell-deficient nu/nu rats, compared with 0% and 38.5% incidence in nu/+ rats. T cell deficiency promoted the inhibitory action of AOM on apoptosis in both liver and colon at 48 weeks. In contrast, T cell deficiency increased cell proliferation after AOM treatment in both tissues. Wild-type p53 was reduced in both tissues of T cell-deficient rats. AOM treatment induced c-Jun and c-Fos expressions in the liver but increased only Fos B in the colon, whereas T cell deficiency enhanced c-Jun overexpression in the liver. These results suggest that T cell deficiency leads to liver carcinogenesis partly by a reduction in wild-type p53 and increasing c-Jun expression in AOM-treated rats.  相似文献   

10.
Extracellular zinc promotes cell proliferation and its deficiency leads to impairment of this process, which is particularly important in epithelial cells. We have recently characterized a zinc-sensing receptor (ZnR) linking extracellular zinc to intracellular release of calcium. In the present study, we addressed the role of extracellular zinc, acting via the ZnR, in regulating the MAP kinase pathway and Na+/H+ exchange in colonocytes. We demonstrate that Ca2+ release, mediated by the ZnR, induces phosphorylation of ERK1/2, which is highly metal-specific, mediated by physiological concentrations of extracellular Zn2+ but not by Cd2+, Fe2+, Ni2+, or Mn2+. Desensitization of the ZnR by Zn2+, is followed by approximately 90% inhibition of the Zn2+ -dependent ERK1/2 phosphorylation, indicating that the ZnR is a principal link between extracellular Zn2+ and ERK1/2 activation. Application of both the IP3 pathway and PI 3-kinase antagonists largely inhibited Zn2+ -dependent ERK1/2 phosphorylation. The physiological significance of the Zn2+ -dependent activation of ERK1/2 was addressed by monitoring Na+/H+ exchanger activity in HT29 cells and in native colon epithelium. Preincubation of the cells with zinc was followed by robust activation of Na+/H+ exchange, which was eliminated by cariporide (0.5 microm); indicating that zinc enhances the activity of NHE1. Activation of NHE1 by zinc was totally blocked by the ERK1/2 inhibitor, U0126. Prolonged acidification, in contrast, stimulates NHE1 by a distinct pathway that is not affected by extracellular Zn2+ or inhibitors of the MAP kinase pathway. Desensitization of ZnR activity eliminates the Zn2+ -dependent, but not the prolonged acidification-dependent activation of NHE1, indicating that Zn2+ -dependent activation of H+ extrusion is specifically mediated by the ZnR. Our results support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways that affect pH homeostasis in colonocytes. Furthermore activation of both, ERK and NHE1, by extracellular zinc may provide the mechanism linking zinc to enhanced cell proliferation.  相似文献   

11.
The effect of polaprezinc, a chelate compound consisting of zinc ion and L-carnosine, on abnormalities of taste sensation induced by feeding a zinc-deficient diet to rats was examined by using the two-bottle preference test (quinine hydrochloride as a bitter taste and sodium chloride as a salty taste). Rats were fed either a zinc-deficient or a zinc-sufficient diet. The zinc-deficient diet increased the preference for both taste solutions, while polaprezinc (at doses of 3 and 10 mg/kg) restored the altered taste preferences. We also evaluated the proliferation of taste bud cells using 5-bromo-2'-deoxyuridine (BrdU). The BrdU incorporation into taste bud cells was significantly reduced in rats fed a zinc-deficient diet compared with rats fed a zinc-sufficient diet (from 50.8% to 45.0%, p<0.05) and this reduction was reversed by polaprezinc at doses of 1, 3, and 10 mg/kg, increasing to 50.2%, 53.5%, and 52.5%, respectively. These findings indicate that zinc deficiency induces the delayed of proliferation of taste bud cells, while polaprezinc improves cell proliferation. In conclusion, polaprezinc had a therapeutic effect in a rat model of abnormal taste sensation. Its mechanism of action was suggested to involve improvement of the decrease in taste bud cell proliferation caused by zinc deficiency.  相似文献   

12.
Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn(2+) sensing G-protein coupled receptor (ZnR) that activates Ca(2+) signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn(2+), by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca(2+) release and Zn(2+)-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na(+)/H(+) exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na(+)/H(+) exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn(2+)-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn(2+), acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes.  相似文献   

13.
Low folate intake is associated with colon cancer. We combined a proteomics and biochemical approach to identify proteins and pathways affected by folate deficiency in human colonocytes. Folate differentially altered activity and expression of proteins involved in proliferation [e.g., PCNA], DNA repair [e.g., XRCC5, MSH2], apoptosis [e.g., BAG family chaperone protein, DIABLO and porin], cytoskeletal organization [e.g., actin, ezrin, elfin], and expression of proteins implicated in malignant transformation [COMT, Nit2].  相似文献   

14.
We previously reported the utility of Low-Coherence Enhanced Backscattering (LEBS) Spectroscopy in detecting optical changes in uninvolved rectal mucosa, changes that are indicative of the presence of advanced colorectal adenomas elsewhere in the colon (field carcinogenesis). We hypothesized that the alterations in optical signatures are due to structural changes in colonocytes. To elucidate those colonocyte changes, we used LEBS and an early time point in an animal model of colorectal field carcinogenesis – rats treated with azoxymethane (AOM). Changes in LEBS markers in intact mucosa from AOM-treated rats could be at least partially attributed to changes in colonocytes. To investigate the molecular mechanisms underlying the colonocyte abnormalities in premalignant colon, we took a candidate approach. We compared expression profiles of genes implicated directly or indirectly in cytoskeletal dysregulation in colorectal tissues from saline-treated versus AOM-treated rats. Our data suggest that a number of genes known to affect colon tumorigenesis are up-regulated in colonocytes, and genes previously reported to be tumor suppressors in metastatic cancer are down-regulated in colonocytes, despite the colonocytes being histologically normal. To further understand the role of the cytoskeleton in generating changes in optical markers of cells, we used pharmacological disruption (using colchicine) of the cytoskeleton. We found that differences in optical markers (between AOM- and control-treated rats) were negated by the disruption, suggesting cytoskeletal involvement in the optical changes. These studies provide significant insights into the micro-architectural alterations in early colon carcinogenesis, and may enable optimization of both bio-photonic and molecular risk stratification techniques to personalize colorectal cancer screening.  相似文献   

15.
The objective of this investigation was to evaluate the effect of 47 mg zinc supplementation on deficiency of zinc in rats during 98 d of restriction of motor activity (hypokinesia), which appeared by higher plasma zinc concentration. One Hundred 13-week-old Sprague-Dawley male rats weighing 360–390 g were used to perform the studies: They were equally divided into four groups: 1. Unsupplemented control animals (UCA); 2. Unsupplemented hypokinetic animals (UHA); 3. Supplemented control animals (SCA); and 4. Supplemented hypokinetic animals (SHA). For the simulation of the effect of hypokinesia (HK), the UHA and SHA were kept in small individual cages made of wood, which restricted their movements in all directions without hindering food and water intake. The SCA and SHA received daily with their food an additional amount of zinc. Before and during the experimental period of 98 d, plasma, urinary and fecal zinc, balance of zinc, food intake, and body weight were determined at different intervals. In the SHA and UHA, the concentration of zinc in plasma, and the elimination of zinc in urine and feces increased significantly when compared with the SCA and UCA, whereas the balance of zinc was negative. The body weight and food intake decreased significantly in the SHA and UHA when compared with the SCA and UCA. The increased plasma concentration of zinc in both the SHA and UHA groups was in contrast to the observed hypozincnemia during prolonged immobilization as during prolonged hospitalization. This reaction suggests that there may be some other mechanisms that are affecting the process of control and regulation of zinc metabolism during prolonged HK. It was concluded that exposure to prolonged restriction of motor activity of rats induces significant increases in plasma concentration, fecal and urinary elimination of zinc in the presence of negative zinc balance and regardless the daily intake of large amounts of zinc with their food, leading to zinc deficiency.  相似文献   

16.
Zinc deficiency during diabetes projects a role for zinc nutrition in the management of diabetic nephropathy. The current study explored whether zinc supplementation protects against diabetic nephropathy through modulation of kidney oxidative stress and stress-induced expression related to the inflammatory process in streptozotocin-induced diabetic rats. Groups of hyperglycemic rats were exposed to dietary interventions for 6 weeks with zinc supplementation (5 times and 10 times the normal level). Supplemental-zinc-fed diabetic groups showed a significant reversal of increased kidney weight and creatinine clearance. There was a significant reduction in hyperlipidemic condition along with improved PUFA:SFA ratio in the renal tissue. Expression of the lipid oxidative marker and expression of inflammatory markers, cytokines, fibrosis factors and apoptotic regulatory proteins observed in diabetic kidney were beneficially modulated by zinc supplementation, the ameliorative effect being concomitant with elevated antiapoptosis. There was a significant reduction in advanced glycation, expression of the receptor of the glycated products and oxidative stress markers. Zinc supplementation countered the higher activity and expression of polyol pathway enzymes in the kidney. Overexpression of the glucose transporters, as an adaptation to the increased need for glucose transport in diabetic condition, was minimized by zinc treatment. The pathological abnormalities in the renal architecture of diabetic animals were corrected by zinc intervention. Thus, dietary zinc supplementation has a significant beneficial effect in the control of diabetic nephropathy. This was exerted through a protective influence on oxidative-stress-induced cytokines, inflammatory proliferation and consequent renal injury.  相似文献   

17.
The nucleotide diadenosine tetraphosphate has been suggested to function as a signal molecule for the initiation of DNA replication. Previous studies have indicated that diadenosine tetraphosphate is synthesized by certain aminoacyl tRNA synthetases and that diversion of AMP from the amino acid-enzyme complex to ATP to form diadenosine tetraphosphate is facilitated by zinc ions. The growth retardation of zinc-deficient rats is associated with specific reduction in DNA replication and also with a potentially growth-limiting decrease in food intake. The possibility has been investigated that in zinc-deficient rats, lack of Zn(2+) restricts diadenosine tetraphosphate synthesis, resulting in a failure to synthesize DNA and in a reduction in growth. The results indicate that the depressed growth potential caused by the reduction in food intake associated with the deficiency was sufficient to lower diadenosine tetraphosphate concentrations significantly in the liver and spleen. However, there was no indication of a specific effect of zinc deficiency on diadenosine tetraphosphate values.  相似文献   

18.
The functional heterogeneity of different segments of the rat large intestine was investigated by means of transepithelial potential difference (PD), short-circuit current (Isc) and transepithelial resistance (Rt) measurements in control rats and after deoxycorticosterone acetate (DOCA) pretreatment. Rt and PD were low in caecum and proximal colon but higher in the distal colon and rectum. Isc was highest in the distal colon, lower in the caecum, proximal colon, and rectum. None of the electrical properties was sensitive to amiloride in control conditions. DOCA increased PD and Isc in the caecum, distal colon and rectum but had no effect in the proximal colon. The increase of the Isc after DOCA in the distal colon and rectum was reached by induction of the amiloride-sensitive Isc associated with reduction of the amiloride-insensitive Isc. The effect of DOCA could be completely prevented by concurrent spironolactone treatment. The results suggest that the epithelia of the proximal parts of the large intestine are "leaky" whereas those of the distal colon and rectum are relatively "tight". It is concluded that there is a marked quantitative and qualitative segmental heterogeneity along the rat large intestine.  相似文献   

19.
The present study was conducted to investigate the effect of zinc deficiency on fatty acid desaturation in rats fed two different types of dietary fat, a mixture of coconut oil and safflower oil (7∶1, w/w, “coconut oil diet”) or linseed oil (“linseed oil diet”). In order to ensure an adequate food intake, all rats were force-fed by gastric tube. Zinc deficiency caused statistical significant reducion of Δ9-desaturase activity in liver microsomes of rats fed coconut oil diet and tendencial reduction (p<0.15) in rats fed linseed oil diet compared with control rats fed diets with the same type of fat. In agreement with this effect, zinc deficiency in the rats fed both types of dietary fat increased the ratio between total saturated and total monounsaturated fatty in liver phospholipids and liver microsomes. Zinc deficient rats on the coconut oil diet had unchanged Δ6-desaturase activity with linoleic acid as substrate and lowered activity with α-linolenic acid as substrate. In contrast, zinc deficient rats on the linseed oil diet had increased Δ6-desaturase activity with linoleic acid as substrate and unchanged activity with α-linolenic acid. Because linoleic acid is the main substrate for Δ6-desaturase in the rats fed coconut oil diet, and α-linolenic acid is the main substrate in the rats fed linseed oil diet, it is concluded that in vivo Δ6-desaturation was not changed by zinc deficiency in the rats fed both types of dietary fat. Activity of Δ5-desaturase was also not changed by zinc deficiency in the rats fed both dietary fats. Levels of fatty acids in liver phospholipids and microsomes derived by Δ4-, Δ5-, and Δ6-desaturation were not consistently changed by zinc deficiency in the rats fed both types of dietary fat. Thus, the enzyme studies and also fatty acid composition data of liver phospholipids and microsomes indicate that zinc deficiency does not considerably disturb desaturation of linoleic and α-linolenic acid. Therefore, it is suggested that similarities between deficiencies of zinc and essential fatty acids described in literature are not due to disturbed desaturation of linoleic acid in zinc deficiency. The present study also indicates that zinc deficiency enhances incorporation of eicosapentaenoic acid into phosphatidylcholine of rats fed diets with large amounts ofn-3 polyunsaturated fatty acids.  相似文献   

20.
Although there is abundant evidence that gastrin-releasing peptide acts as a mitogen in various carcinoma cell lines, the effect of administration of gastrin-releasing peptide on the colorectal mucosa in vivo has not been reported. The aims of this study were to determine whether continuous infusion of gastrin-releasing peptide stimulated proliferation or accelerated carcinogenesis in the rat gastrointestinal tract and other organs. The possible requirement for C-terminal amidation for mitogenic activity in vivo was also investigated. Proliferation was measured in the colon by metaphase index and by immunostaining for the proliferation marker Ki-67, and in other tissues by immunostaining alone. Acceleration of colorectal carcinogenesis was assessed by counting aberrant crypt foci after treatment with the carcinogen azoxymethane. Defunctioning of the rectum reduced both the proliferative index and the crypt height of the rectal mucosa of untreated rats. Treatment with amidated or glycine-extended gastrin-releasing peptide for 4 weeks using implanted mini-osmotic pumps resulted in a two- to three-fold increase in proliferation, and an increase in crypt height, in the defunctioned rectal mucosa (p<0.001), with smaller but significant increases in the caecum and distal colon. No changes in proliferation were detected in lung, pancreas or gastric mucosa. The numbers of aberrant crypt foci in the mid-colon, distal colon and rectum following treatment with azoxymethane were also significantly increased by infusion with amidated or glycine-extended gastrin-releasing peptide. We conclude that administration of gastrin-releasing peptide to mature rats stimulates proliferation and accelerates carcinogenesis in the colorectal mucosa, and that C-terminal amidation is not essential for either effect. Gastrin-releasing peptides could thus potentially act as promoters of colorectal carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号