首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A lipoic acid auxotroph of Escherichia coli K-12, strain W1485lip2 (ATCC25645), produced pyruvic acid aerobically from glucose under the lipoic acid-deficient conditions, while the prototrophic parent strain, W1485 (ATCC12435), produced 2-oxoglutaric acid as the main product. The mechanism of the pyruvic acid production by strain W1485lip2 was found to be the impaired oxidative decarboxylation of pyruvic acid caused by the decrease in the activity of pyruvate dehydrogenase complex under the conditions of lipoic acid deficiency. Under the optimum culture conditions using the pH-controlled jar fermentor, 25.5?g/l pyruvic acid was obtained from 50?g/l glucose after the culture for 32–40?h at pH?6.0. The relationship between the pyruvic acid productivity and the pyruvate dehydrogenase complex activity in jar-fermentor culture was discussed.  相似文献   

2.
《BBA》1987,893(3):386-397
Three NAD(P)H dehydrogenases were found and purified from a soluble fraction of cells of the purple non-sulfur bacterium Rhodobacter capsulatus, strain B10. Molecular mass of NAD(P)H, NADPH and NADH dehydrogenases are 67 000 (4 · 18 000), 35 000 and 39 000, and the isoelectric points are 4.6, 4.3 and 4.5, respectively. NAD(P)H dehydrogenase is characterized by a higher sensitivity to quinacrine, NADPH dehydrogenase by its sensitivity to p-chloromercuribenzoate and NADH dehydrogenase by its sensitivity to sodium arsenite. In contrast to the other two enzymes, NAD(P)H dehydrogenase is capable of oxidizing NADPH as well as NADH, but the ratio of their oxidation rates depends on the pH. All NAD(P)H dehydrogenases reacted with ferricyanide, 2,6-dichlorophenolindophenol, benzoquinone and naphthoquinone, but did not exhibit transhydrogenase, reductase or oxidase activity. Moreover, NADH dehydrogenase was also capable of reducing FAD and FMN. NAD(P)H and NADH dehydrogenases possessed cytochrome-c reductase activity, which was stimulated by menadione and ubiquinone Q1. The activity of NAD(P)H and NADH dehydrogenases depended on culture-growth conditions. The activity of NAD(P)H dehydrogenase from cells grown under chemoheterotrophic aerobic conditions was the lowest and it increased notably under photoheterotrophic anaerobic conditions upon lactate or malate growth limitation. The activity of NADH dehydrogenase was higher from the cells grown under photoheterotrophic anaerobic conditions upon nitrate growth limitation and under chemoheterotrophic aerobic conditions. NADPH dehydrogenase synthesis dependence on R. capsulatus growth conditions was insignificant.  相似文献   

3.
The aim of this work was to discover the extent of interference by phosphoenolpyruvate (PEP) phosphatase in spectrophotometric assays of PEP carboxylase (EC 4.1.1.31) in crude extracts of plant organs. The presence of PEP phosphatase and lactate dehydrogenase (EC 1.1.1.27) in extracts leads to PEP-dependent NADH oxidation that is independent of PEP carboxylase activity, and hence to overestimation of PEP carboxylase activity. In extracts of three organs of pea (Pisum sativum L.: leaves, developing embryos, and Rhizobium nodules), two organs of wheat (Triticum aestivum L.: developing grain and endosperm), and leaves of Moricandia arvensis (L.) D.C., lactate dehydrogenase activity was at most only 16% of that of PEP carboxylase at the pH optimum for PEP carboxylase activity. Endogenous PEP phosphatase and lactate dehydrogenase are thus unlikely to interfere seriously with the assay for PEP carboxylase at its optimum pH. Addition of lactate dehydrogenase to PEP carboxylase assays— a proposed means of correcting for nonenzymic decarboxylation of oxaloacetate to pyruvate—resulted in increases in PEP-dependent NADH oxidation from zero (Rhizobium nodules) to 131% (wheat grains). There was no obvious relationship between the magnitude of this increase and conditions in the assay that might promote oxaloacetate decarboxylation. However, the magnitude of the increase was highly positively correlated with the activity of PEP phosphatase in the extract. Addition of lactate dehydrogenase to PEP carboxylase assays can thus result in very large overestimations of PEP carboxylase activity, and should only be used as a means of correction for oxaloacetate decarboxylation for extracts with negligible PEP phosphatase activity.  相似文献   

4.
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria   总被引:9,自引:4,他引:5       下载免费PDF全文
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD+- and NADP+-isocitrate dehydrogenases, NAD+- and NADP+-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP+-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP+-malate dehydrogenase activity is probably due to unspecificity of the NAD+-malate dehydrogenase. NADP+-specific isocitrate dehydrogenase had much lower Kms for NADP+ and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD+-specific enzyme (101 micromolar for NAD+ and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP+-specific isocitrate dehydrogenase whereas the NAD+-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP+ stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP+ is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP+-reducing activities of malate dehydrogenase and the NADP+-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.  相似文献   

5.
The activity of 10 enzymes separated by acrylamide disc gel electrophoresis of leaf and stem extracts from Dianthus grown under summer and winter conditions was studied. While banding was constant and highly reproducible under each environment, differences between the 3 cultivars and between the tissues were evident. No significant differences in the isozyme patterns of glutamate dehydrogenase, 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, and catalase were observed between the 2 environments. Loss of activity was observed under winter conditions with amylase and lactate dehydrogenase and loss of certain isozymic components was evident with acid phosphatase and esterase. Prominent changes were observed in peroxidase isozymes, the hardy cultivars developing additional isozymic components under winter conditions. Only minor changes in the total protein banding were seen. The enzymes showed considerable stability in those tissues killed by the freezing conditions.  相似文献   

6.
The reoxidation of NADH generated in reactions within the mitochondrial matrix of Saccharomyces cerevisiae is catalyzed by an NADH dehydrogenase designated Ndi1p (C. A. M. Marres, S. de Vries, and L. A. Grivell, Eur. J. Biochem. 195:857–862, 1991). Gene disruption analysis was used to examine possible metabolic functions of two proteins encoded by open reading frames having significant primary sequence similarity to Ndi1p. Disruption of the gene designated NDH1 results in a threefold reduction in total mitochondrial NADH dehydrogenase activity in cells cultivated with glucose and in a fourfold reduction in the respiration of isolated mitochondria with NADH as the substrate. Thus, Ndh1p appears to be a mitochondrial dehydrogenase capable of using exogenous NADH. Disruption of a closely related gene designated NDH2 has no effect on these properties. Growth phenotype analyses suggest that the external NADH dehydrogenase activity of Ndh1p is important for optimum cellular growth with a number of nonfermentable carbon sources, including ethanol. Codisruption of NDH1 and genes encoding malate dehydrogenases essentially eliminates growth on nonfermentable carbon sources, suggesting that the external mitochondrial NADH dehydrogenase and the malate-aspartate shuttle may both contribute to reoxidation of cytosolic NADH under these growth conditions.  相似文献   

7.
《Process Biochemistry》2007,42(4):634-640
A transition in the bacterial growth rate to below maximum was found to be an optimum parameter of cellular physiology to increase the activity of acetohydroxy acid synthase, a regulatory enzyme in l-valine synthesis, and amino acid overproduction by Corynebacterium glutamicum ATCC 13032 recombinants under batch and fed-batch cultivation conditions. An increase in l-valine synthesis under transient situations when cellular growth rate was downregulated was correlated to a decrease in the activity of aconitase, a key enzyme in the tricarboxylic acid cycle (TCA) of C. glutamicum, and, in contrast, to an increase in the activity of glucose-6-phosphate dehydrogenase, a key enzyme in the pentose phosphate pathway (PPP). The increase in amino acid synthesis was also directly related to a drastic increase in intracellular pyruvate concentration. Thus, an increase in intracellular pyruvate availability and NADPH2 generation by PPP could be the metabolic origins of the increased l-valine overproduction by growth restrained C. glutamicum cell culture.  相似文献   

8.
Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L   总被引:8,自引:8,他引:0       下载免费PDF全文
Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate.  相似文献   

9.
《Experimental mycology》1989,13(3):294-298
Succinate dehydrogenase (EC 1.3.99.1) fromDictyostelium discoideum was purified 40-fold. The pH optimum for the reaction underin vitro conditions was 7.4. Divalent cations showed no effect on the enzyme activity. Lineweaver-Burk plots of initial velocity data were linear. The Km value for succinate was calculated to be 0.22 mM. Apparent Ki values for fumarate, malonate, and oxaloacetate were 0.4, 0.02, and 0.003 mM, respectively. All three showed a competitive inhibition pattern. A comparison of the reaction ratein vivo with the calculated enzyme activity requiredin vivo (Vv) suggests that succinate dehydrogenase may be rate controlling to flux through the citric acid cycle.  相似文献   

10.
Methods for coenzyme-linked spectrophotometric assays of activities of several enzymes associated with the energy-yielding metabolism of the predatory polychaete, Glycera alba (Müller), have been examined with respect to effects of methods of collection, preservation, and extraction of material, and the composition of assay reaction media on enzyme activities estimated on crude extracts of individual worms. Liquid nitrogen and Drikold (solid CO2) were equally effective for the preservation of specimens prior to the enzyme assays, and phosphate buffer (0.1 M, pH 7.5) was a generally useful extractant. Effects of reaction conditions on phosphofructokinase activities are detailed. This enzyme had an optimum pH of 8.25 and was inhibited by ATP at pH 6.9 but not at the pH optimum.Activities of phosphofructokinase, pyruvate kinase, malate dehydrogenase, α-glycerophosphate dehydrogenase, lactate dehydrogenase, phosphoenolpyruvate carboxykinase, citrate synthase, and glutamate dehydrogenase have been assayed in crude extracts of G. alba from four sampling stations at various distances from the source of discharge of organic effluent from a seaweed factory into Loch Creran in the west of Scotland. Mean phosphofructokinase activity and to a lesser extent, mean pyruvate kinase activity, were lowest in the group of G. alba collected from the location most affected by the organic input.The results are discussed in relation to the reliability of the enzyme assays, the enzyme activity profile of G. alba with respect to its ecology, and the development of a biochemical index of effects of organic pollution on this representative of the “pollution-sensitive” macrobenthic invertebrate species found in unpolluted or “moderately” polluted areas of the marine environment.  相似文献   

11.
12.
Escherichia coli NZN111, which lacks activities for pyruvate-formate lyase and lactate dehydrogenase, and AFP111, a derivative which contains an additional mutation in ptsG (a gene encoding an enzyme of the glucose phophotransferase system), accumulate significant levels of succinic acid (succinate) under anaerobic conditions. Plasmid pTrc99A-pyc, which expresses the Rhizobium etli pyruvate carboxylase enzyme, was introduced into both strains. We compared growth, substrate consumption, product formation, and activities of seven key enzymes (acetate kinase, fumarate reductase, glucokinase, isocitrate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxylase, and pyruvate carboxylase) from glucose for NZN111, NZN111/pTrc99A-pyc, AFP111, and AFP111/pTrc99A-pyc under both exclusively anaerobic and dual-phase conditions (an aerobic growth phase followed by an anaerobic production phase). The highest succinate mass yield was attained with AFP111/pTrc99A-pyc under dual-phase conditions with low pyruvate carboxylase activity. Dual-phase conditions led to significant isocitrate lyase activity in both NZN111 and AFP111, while under exclusively anaerobic conditions, an absence of isocitrate lyase activity resulted in significant pyruvate accumulation. Enzyme assays indicated that under dual-phase conditions, carbon flows not only through the reductive arm of the tricarboxylic acid cycle for succinate generation but also through the glyoxylate shunt and thus provides the cells with metabolic flexibility in the formation of succinate. Significant glucokinase activity in AFP111 compared to NZN111 similarly permits increased metabolic flexibility of AFP111. The differences between the strains and the benefit of pyruvate carboxylase under both exclusively anaerobic and dual-phase conditions are discussed in light of the cellular constraint for a redox balance.  相似文献   

13.
When intact chloroplasts are incubated in the dark with dihydroxyacetone phosphate, an increase in fructose 1,6-bisphosphatase activity occurs which resembles the reductive activation observed in illuminated chloroplasts. Under optimum conditions, the activity increases to about 150 μmol · h?1 · mg?1 chlorophyll within 60 min. The dark activation of the enzyme is reversed by electron acceptors such as oxaloacetate, nitrite, and 3-phosphoglycerate plus ATP. Activation is most marked under strictly anaerobic conditions, being strongly inhibited by O2. It is concluded that NADPH, generated from dihydroxyacetone phosphate in situ in the reaction catalyzed by NADP+-dependent glyceraldehyde phosphate dehydrogenase, can provide electrons for the reductive activation of fructose 1,6-bisphosphatase in the dark.  相似文献   

14.
The phenotypic characteristics of the species Sulfobacillus thermotolerans Kr1T, as dependent on the cultivation conditions, are described in detail. High growth rates (0.22–0.30 h?1) and high oxidative activity were recorded under optimum mixotrophic conditions at 40 °C on medium with inorganic (Fe(II), S0, or pyrite-arsenopyrite concentrate) and organic (glucose and/or yeast extract) substrates. In cells grown under optimum conditions on medium with iron, hemes a, b, and, most probably, c were present, indicating the presence of the corresponding cytochromes. Peculiar extended structures in the form of cylindrical cords, never observed previously, were revealed; a mucous matrix, likely of polysaccharide nature, occurred around the cells. In the cells of sulfobacilli grown litho-, organo-, and mixotrophically at 40 °C, the enzymes of the three main pathways of carbon utilization and some enzymes of the TCA cycle were revealed. The enzyme activity was maximum under mixotrophic growth conditions. The growth rate in the regions of limiting temperatures (55 °C and 12–14 °C) decreased two-and tenfold, respectively; no activity of 6-phosphogluconate dehydrogenase, one of the key enzymes of the oxidative pentose phosphate pathway, could be revealed; and a decrease in the activity of almost all enzymes of glucose metabolism and of the TCA cycle was observed. The rate of 14CO2 fixation by cells under auto-, mixo-, and heterotrophic conditions constituted 31.8, 23.3, and 10.3 nmol/(h mg protein), respectively. The activities of RuBP carboxylase (it peaked during lithotrophic growth) and of carboxylases of heterotrophic carbon dioxide fixation were recorded. The physiological and biochemical peculiarities of the thermotolerant bacillus are compared versus moderately thermophilic sulfobacilli.  相似文献   

15.
A lipoic acid auxotroph of Escherichia coli K-12, strain W1485lip2 (ATCC25645), produced pyruvic acid aerobically from glucose under the lipoic acid-deficient conditions, while the prototrophic parent strain, W1485 (ATCC12435), produced 2-oxoglutaric acid aas the main product. The mechanism of the pyruvic acid production by strain W1485lip2 was found to be the impaired oxidative decarboxylation of pyruvic acid caused by the decrease in the activity of pyruvate dehydrogenase complex under the conditions of lipoic acid deficiency. Under the optimum culture conditions using the pH-controlled jar fermentor, 25.5 g/l pyruvic acid was obtained from 50 g/l glucose after the culture for 32–40 h at pH6.0. The relationship between the pyruvic acid productivity and the pyruvate dehydrogenase complex activity in jar-fermentor culture was discussed.  相似文献   

16.
Polyporus dichrous, a white-rot fungus previously shown to lack phenol oxidase activity when grown on agar media in the presence of a variety of phenolic compounds, was found to exhibit phenol oxidase activity upon aging when grown on a lignosulfonate-containing agar medium. The phenol oxidase activity was compared with that of Trametes versicolor grown under the same conditions, in terms of substrate specificity, pH optimum, and temperature sensitivity. The phenol oxidase activity of P. dichrous was intracellular of tyrosinase type, with a pH optimum around 5.5, and was heat-sensitive, having a half-life of 10 min at 60°C.  相似文献   

17.
Non-covalent interaction of alcohol dehydrogenase with polysaccharides was studied using three neutral and three anionic polysaccharides. The process of interaction of alcohol dehydrogenase with gum Arabic was optimized with respect to the ratio of enzyme to gum Arabic, pH, and molarity of buffer. Alcohol dehydrogenase–gum Arabic complex formed under optimized conditions showed 93 % retention of original activity with enhanced thermal and pH stability. Lower inactivation rate constant of alcohol dehydrogenase–gum Arabic complex within the temperature range of 45 to 60 °C implied its better stability. Half-life of alcohol dehydrogenase–gum Arabic complex was higher than that of free alcohol dehydrogenase. A slight increment was observed in kinetic constants (K m and V max) of gum Arabic-complexed alcohol dehydrogenase which may be due to interference by gum Arabic for the binding of substrate to the enzyme. Helix to turn conversion was observed in complexed alcohol dehydrogenase as compared to free alcohol dehydrogenase which may be responsible for observed stability enhancement.  相似文献   

18.
Effect of Oxygen on Lactose Metabolism in Lactic Streptococci   总被引:11,自引:3,他引:8       下载免费PDF全文
Three strains of Streptococcus lactis, two of Streptococcus cremoris, and one of Streptococcus thermophilus metabolized oxygen in the presence of added carbohydrate primarily via a closely coupled NADH oxidase/NADH peroxidase system. No buildup of the toxic intermediate H2O2 was detected with the three S. lactis strains. All six strains contained significant superoxide dismutase activity and are clearly aerotolerant. Lactose- or glucose-driven oxygen consumption was biphasic, with a rapid initial rate followed by a slower secondary rate which correlated with factors affecting the in vivo activation of lactate dehydrogenase. The rate of oxygen consumption was rapid under conditions that led to a reduction in lactate dehydrogenase activity (low intracellular fructose 1,6-bisphosphate concentration). These conditions could be achieved with nongrowing cells by adding lactose at a constant but limiting rate. When the rate of lactose fermentation was limited to 5% of its maximum, nongrowing cells of S. lactis strains ML3 and ML8 carried out an essentially homoacetic fermentation under aerobic conditions. These same cells carried out the expected homolactic fermentation when presented with excess lactose under anaerobic conditions. Homoacetic fermentation leads to the generation of more energy, by substrate-level phosphorylation via acetate kinase, than the homolactic fermentation. However, it was not observed in growing cells and was restricted to slow fermentation rates with nongrowing cells.  相似文献   

19.
Anaerobic induction of alanine aminotransferase in barley root tissue   总被引:14,自引:6,他引:8       下载免费PDF全文
Good AG  Crosby WL 《Plant physiology》1989,90(4):1305-1309
Alanine aminotransferase, otherwise called glutamate-pyruvate aminotransferase (GPT), activity increases up to fourfold during several days of anaerobic induction in barley (Hordeum vulgare L.) roots, reaching a maximum activity of 13 international units per gram fresh weight. This increase in activity paralleled the increase in alcohol dehydrogenase activity in the same root tissue. Upon return to aerobic conditions, the induced GPT activity declined with an apparent half-life of 2 days. The isozyme profile of GPT in barley root tissue comprised one band of activity; in maize there were three bands of activity, the bands with greater mobility had much lower activity. Native polyacrylamide gel electrophoresis indicated that the induction of GPT activity results from an increase in the level of activity of these bands; no other activities were detected. When root tissue was induced under different levels of hypoxia (0%, 2%, 5%, and 21% O2), changes in GPT activity were found to increase with lower levels of oxygen. Comparisons of GPT induction in barley, maize (Zea mays), rye, (Secale cereale) and wheat (Triticum aestivum) indicate that this enzyme is induced in the root tissue of all of these cereals; however, anaerobic root conditions do not result in the induction of GPT activity in leaf tissue. The dependence of GPT induction on high levels of nitrate in the media was tested by comparing activity levels in Hoagland solution and a nitrate-free nutrient solution. GPT activity was induced to similar levels under both conditions. These results indicate that alanine aminotransferase shows a very similar pattern of induction to alcohol dehydrogenase in barley root tissue and may be important in anaerobic glycolysis.  相似文献   

20.
The effects of different metal chelating agents on the activity of the NADP-linked isocitrate dehydrogenase from pig heart have been studied. Addition of ethylene glycolbis(β-aminoethyleter) N,N′-tetraacetic acid, N-hydroxyethylenediamine triacetic acid, and ethylenediamine tetraacetic acid (EDTA) under certain conditions could enhance the activity by a factor of nearly 3. Moreover, the time lag occurring before the reaction rate approached a constant value at suboptimal metal-ion concentrations was abolished by the metal chelating agents. S0.5 for isocitrate increased slightly in the presence of the metal-chelating agents. The substrate inhibition occurring at high NADP concentrations was abolished by the activator. The pH optimum was the same in the absence and presence of EDTA. The extent of activation increased on a relative basis with increasing pH. Studies of the sedimentation behavior of the enzyme under different conditions suggested that the effect of the metal-chelating agents could not be accounted for by aggregation or depolymerization of the enzyme. NADPH affects the enzyme activity in a similar way, although less efficiently than the metal chelating agents. The results indicate that most organic metal complexes can activate the enzyme. It has previously been suggested that isocitrate complexed with a metal ion is the real substrate for the enzyme. If this holds true, the activation found with other organic metal complexes can be accounted for by a reduction in the apparent Km for the isocitrate metal complex and by an increase in the maximum rate of the reaction by removal of the substrate inhibition at high NADP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号