首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seeds ofFraxinus excelsior L. were stratified at 17-20 °C (warm stratification), at 4-6 °C (cold stratification) and at alternating temperature (warm — cold stratification). The seeds subjected to warm stratification only, remained dormant. The seeds stratified only at 4-6 °C germinated gradually during a long period of time. The seeds subjected to warm — cold stratification, however, germinated with great intensity within a relatively short period of time. GA3 was shown to stimulate the growth of embryos markedly, and its effect on the germination of seeds depended on the temperature of stratification. GA3 applied during the cold stratification accelerated the removal of dormancy by shortening the period of stratification and by influencing the germination of seeds. The results obtained indicate a similarity between the effect of temperature 17-20 °C during the warm stratification and that of gibberellic acid. Both those factors applied separately affect favourably after-ripening of the embryos and accelerate the germination of seeds.  相似文献   

2.
Tillandsia recurvata is an epiphytic bromeliad with a wide distribution in the Americas; however, little is known about the development of its post-seminal adaptations for survival in epiphytic environments. The purpose of this study was to define the temperature and water requirements for the germination of T. recurvata seeds. The absence of radicle emergence in T. recurvata seeds resulted in 2?stages of germination: swollen with broken seed coat (stage-1) and chlorophyllic embryos (stage-2). The effects of partial or discontinuous hydration on germinated seed survival were also assessed. The seeds were collected in a semi-arid shrubland of Mexico City. We explored: (1) whether water vapour can provide a sufficient water source for germination; (2) the temperature required for germination stage-1 and the optimal and critical osmotic potentials for germination in both germination stages; (3) the effect of seed incubation at different osmotic potentials that undergo subsequent dehydration on their survival in stage-2; and (4) the loss of dehydration tolerance during early post-seminal development. In addition, an image of T. recurvata seed anatomy was obtained to illustrate its structures. Germination stage-1 of T. recurvata seeds is rather similar across the tested temperature range. The seeds required to be in contact with liquid water to germinate. The interval of osmotic potential facilitating both germination stages was from 0 to ?0.6?MPa. Although germinated seeds displayed dehydration tolerance, this tolerance decreased in germination stage-2. The osmotic potential during germination affected the tolerance of the chlorophyllic embryos (stage-2) to subsequent dehydration.  相似文献   

3.
The study investigated various factors stimulating germination of seeds of four species ofChenopodium album agg.—C. album L. s. str.,C. ficifolium Sm.,C. strictum Roth,C. suecicum J. Murr. These factors were: storage in wet and cold, alternating temperature, nitrates mainly in combination with light and, to a lesser degree, the duration of chilling. Germination was inhibited by darkness, which was most marked with seeds ofC. strictum. The effect of alternating temperature was better on the germination ofC. ficifolium andC. suecicum than on that ofC. album andC. strictum. We also discussed several differences in specific reactions of the individual species to the factors under consideration.  相似文献   

4.
Seed germination and seedling growth of Zostera marina L. were monitored in the Chesapeake Bay in 1979 and 1980. Harvested seeds were placed in small acrylic tubes at several sites representing the salinity range of Z. marina distribution. Seed germination was observed first in late September and continued through May, with peaks in the fall and spring. The majority of seeds that germinated (66%) did so between December and March when water temperatures ranged from 0–10°C. There was no correlation between sites (different salinity regimes) and frequency of germination rates, indicating that salinity was not a major factor in the germination process in this study. Additional information on seed germination was available for seeds collected in 1977 and 1980 and subsequently monitored for germination at only one site. These data were similar to germination frequency recorded in 1979–1980.Seedling growth was measured from individuals collected from an existing Zostera marina bed. Seedlings were collected from November through May, at which time we could no longer distinguish seedlings from existing vegetative stock. Growth was characterized by the increased length of the primary shoot, number of leaves per shoot and numbers of shoots per plant. Seedling growth was slow during the winter months (water temperature ? 10°C) but rapidly increased in the spring (temperatures > 10°C). The size range of the harvested seedlings indicated that seed germination in the field probably occurred from October through April, corroborating evidence from the seed germination experiments.  相似文献   

5.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

6.
Stotzky , G., and Elsie A. Cox . (Central Research Labs., United Fruit Co., Norwood, Mass.) Seed germination studies in Musa. II. Alternating temperature requirement for the germination of Musa balbisiana. Amer. Jour. Bot. 49(7): 763–770. Illus. 1962.—Alternating temperatures were found to be required for the germination of seeds of Musa balbisiana. The temperature differentials optimal for germination in soil are dependent upon both the high and low temperatures, and range from 8–23 C. Germination is maximal when the seeds are held 6–12 hr at the high (27–35 C) and 12–18 hr at the low (12–18 C) temperatures. Some germination can be induced by short exposures to alternating temperatures followed by constant high temperatures, but continuous exposure to alternating temperatures is necessary for maximum germination. Excised embryos develop better at constant than at alternating temperatures, showing that the mechanisms affected by alternating temperatures reside elsewhere in the seed. Alternating temperatures are also required for germination of mechanically scarified seeds, although the temperature differentials are less than those necessary for intact seeds, indicating that the action of alternating temperatures is not on the permeability of the integuments.  相似文献   

7.
We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species.  相似文献   

8.
《Acta Oecologica》2001,22(1):1-8
Seeds of Drosera anglica collected in Sweden were dormant at maturity in late summer, and dormancy break occurred during cold stratification. Stratified seeds required light for germination, but light had to be given after temperatures were high enough to be favorable for germination. Seeds stratified in darkness at 5/1 °C and incubated in light at 12/12 h daily temperature regimes of 15/6, 20/10 and 25/15 °C germinated slower and to a significantly lower percentage at each temperature regime than those stratified in light and incubated in light. Length of the stratification period required before seeds would germinate to high percentages depended on (1) whether seeds were in light or in darkness during stratification and during the subsequent incubation period, and (2) the temperature regime during incubation. Seeds collected in 1999 germinated to 4, 24 and 92 % in light at 15/6, 20/10 and 25/15 °C, respectively, after 2 weeks of stratification in light. Seeds stratified in light for 18 weeks and incubated in light at 15/6, 20/10 and 25/15 °C germinated to 87, 95 and 100 %, respectively, while those stratified in darkness for 18 weeks and incubated in light germinated to 6, 82 and 91 %, respectively. Seeds collected from the same site in 1998 and 1999, stratified in light at 5/1 °C and incubated in light at 15/6 °C germinated to 22 and 87 %, respectively, indicating year-to-year variation in degree of dormancy. As dormancy break occurred, the minimum temperature for germination decreased. Thus, seed dormancy is broken in nature by cold stratification during winter, and by spring, seeds are capable of germinating at low habitat temperatures, if they are exposed to light.  相似文献   

9.
Stratification of common ragweed (Ambrosia artemisiifolia) seeds at 4 C was most successful for breaking dormancy, whereas -5 C was least effective and 10 C was intermediate. Germination in the light exceeded that in the dark at all stratification and germination temperatures. The optimum temperatures for germination in the light were 10/20, 15/25, and 20/30. Maximum germination in the dark occurred at 20/30 C for seeds stratified at 4 and 10 C but the optimum temperatures for seeds stratified at -5 C were 10/20, 15/25, and 20/30. Seeds stratified at -5 and 10 C germinated best after 15 weeks of stratification, whereas 12 weeks of stratification at 4 C resulted in maximum germination. Secondary dormancy was induced in seeds which did not germinate in the dark. This was affected by stratification temperature and duration and germination temperature. The ecological significance of these germination characteristics is discussed.  相似文献   

10.
Summary The role of temperature in the regulation of seasonal changes in dormancy and germination was studied in seeds of Polygonum persicaria. Seeds were buried in the field and under controlled conditions. Portions of seeds were exhumed at regular intervals and germination was tested over a range of conditions. Seeds of P. persicaria exhibited a seasonal dormancy pattern that clearly showed the typical features of summer annuals, i.e. dormancy was relieved at low winter temperatures, the germination peak occurred in spring and dormancy was re-induced in summer. The expression of the dormancy pattern was influenced by the temperature at which germination was tested. At 30°C exhumed seeds germinated over a much longer period of the year than at 20° or 10°C. Nitrate added during the germination test occasionally stimulated germination. The seasonal changes in dormancy of buried seeds were regulated by the field temperature. Soil moisture and nitrate content did not influence the changes in dormancy. The fact that, on the one hand, field temperature determined the changes in dormancy and, on the other hand, germination itself was influenced by temperature, was used to describe the seasonal germination pattern of P. persicaria with a model. Germination of exhumed seeds in Petri dishes at field temperature was accurately described with this model. Germination in the field was restricted to the period where the range of temperatures over which germination could proceed (computed with the model) and field temperature overlapped.  相似文献   

11.
Cucumber seeds are light-sensitive, dark-germinating seeds. Inhibition of germination can be induced by prolonged exposure to continuous or intermittent FR. The dark germination process and the response to FR are phytochrome controlled. Phytochrome can be detected in these seeds by differential spectrophotometry in vivo. Spectrophotometrically measurable phytochrome increases during dark germination. The rate of increase is temperature dependent. Light treatments which are inhibitory for germination result in phytochrome contents lower than those of the seeds germinating in darkness. Treatments which restore germination also restore phytochrome formation.  相似文献   

12.
The germination ecology of Sideritis serrata was investigated in order to improve ex‐situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non‐deep physiological dormancy. Under unheated shade‐house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade‐house, exhibited an annual conditional dormancy/non‐dormancy cycle, coming out of conditional dormancy in summer and re‐entering it in winter. Non‐dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non‐dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non‐dormancy cycle in seeds of shrub species.  相似文献   

13.
Restoration of Zostera japonica is needed. Laboratory culture experiments to know the germination characteristics might be helpful for implementation of actual restoration. As a part of germination experiments, we explored suitable water temperature for long-term storage of Z. japonica seeds. This work was based on earlier reports of Zostera marina, which presumably has similar physiological properties to Z. japonica. This study consisted of two experiments: (1) preservation experiments to investigate the fate of stored Z. japonica seeds and (2) germination experiments to investigate the germination potential of the stored seeds. The results of the preservation experiments suggested that seed condition, that is, germinated, degraded, unstable, stable, etc., showed variations between the seeds stored at 4 and 23 °C. The majority of the seeds stored at 4 °C were germinated, while those at 23 °C seemed to be degraded, presumably by bacteria and mold. The germination experiments suggested high germination potential of seeds stored at 4 °C even after 302 days had elapsed. In conclusion, including previously reported results on Z. marina, low temperature was suitable for the preservation of seeds to maintain germination potential.  相似文献   

14.

Background and Aims

Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level.

Methods

Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated.

Key Results

At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD.

Conclusions

Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment.  相似文献   

15.
The effect of temperature on the level of dormancy of primary and secondary dormant Carex pendula and Carex remota seeds was investigated. Primary dormant and secondary dormant seeds were stratified for 4 weeks at 5, 11, 13, and 15 °C, respectively, and tested for germination at 15/5 °C in light. To obtain secondary dormant seeds, primary dormant seeds were stratified at 5 °C and afterwards at 25 °C for 4 weeks. Germination tests were carried out in water and in 25 μmol KNO3-solution to examine differences in sensitivity to nitrate between seeds relieved from primary and secondary dormancy. In both species, seeds with primary and with induced secondary dormancy showed no significant differences in germination. The two sedges showed significant differences in the effect of stratification temperatures between primary and secondary dormant seeds. Primary dormant seeds of C. pendula showed high germination (>80%) in nitrate-solution after stratification at all temperatures, while only temperatures of 5, 11, and 13 °C led to higher germination in nitrate-solution in secondary dormant seeds. Germination percentages of primary and of secondary dormant C. pendula seeds in water increased to a higher extent only after stratification at 5 and 11 °C; stratification of 11 °C was more effective in secondary than in primary dormant seeds. The only temperature that relieved primary dormancy in C. remota seeds was 5 °C where germination in water and nitrate-solution was >90%. Germination of secondary dormant seeds was increased by stratification at 11 °C independent of the test solution but higher germination after stratification at 13 °C occurred only in nitrate-solution. The results support the existence of physiological differences in the regulation of primary and secondary dormancy by temperature, and in the reaction of nitrate, at least in C. remota.  相似文献   

16.
In this investigation, pairs of upper elementary students test germination percentage using seeds of Indian corn (Zea mays), scarlet runner beans (Phaseolus coccineus), and the prairie cup-plant (Silphium perfoliatum) grown on rolled, damp paper towels. The pairs compare seeds that have been stratified, a simulation of overwintering and spring thaw, to seeds of the same type that have not. Then, the full class compares the results across all seed types to determine when each type should be planted to maximize germination percentage. Expected results are that the native cup-plant will require stratification, whereas the domesticated corn and beans—bred over centuries for easy growing—will not. Suggestions for helping students simulate more environmental conditions which could affect seed germination, as well as connections with other academic subjects, are included in the article.  相似文献   

17.
《农业工程》2023,43(1):54-61
The population of Magnolia lanuginosa a rare tree species of northeastern India has declined drastically owing to habitat destruction, low natural regeneration and over harvesting for its multipurpose uses. The present study was carried out to understand the type of dormancy and analyse the effect of storage on viability and germination behaviour of M. lanuginosa under various physical and chemical treatments. Seeds subjected to physical treatments such as water (cold, hot, and boiling), acid (H2SO4) and manual scarification failed in breaking dormancy. Seeds treated with growth regulators (GA3) had a significant effect on germination. It reduced the germination time and the shortest T50 was observed in seeds treated with 2000 mg/l of GA3 (non-scarified seeds) and 1000 mg/l of GA3 (scarified seeds). The use of KNO3 did not have any significant effect in breaking dormancy. However, the use of KNO3 along with GA3, increased the germination percentage. Seeds cold stratified (CS) for 60 days at 5 °C was effective in breaking dormancy and resulted in 84.26% germination. This indicates the prevalence of Type-1 Non deep physiological dormancy in M. lanuginosa seeds that requires a crucial CS period for proper embryo growth and development. The seeds stored in moist sand at 5 °C remained viable even after 120 days with 48.88% viability. The study would be helpful in devising seed germination protocols for mass production and reintroduction of the species into the wild.  相似文献   

18.
Dove tree (Davidia involucrata), a tertiary vestige species, is well-adapted to cool conditions. Dormancy in D. involucrata seed lasts for an extremely long period of time, typically between 3 and 4 years, and this characteristic makes the species an excellent model for studying the mechanisms of seed dormancy. The molecular mechanisms governing germination control in D. involucrata are still unknown. Seed stratification have been reported to enhance germination in recalcitrant seeds. We performed a widely targeted metabolome profiling to identify metabolites and associated pathways in D. involucrata seeds from six different moist sand stratification durations (0–30 months) using the ultra-high-performance liquid chromatography-Q Exactive Orbitrap-Mass spectrometry. There was an increasing germination rate with prolonged stratification durations (12–30 months). Furthermore, we detected 10,008 metabolites in the stratified seeds. We also detected 48 differentially accumulated metabolites (DAMs) between all stratification periods in the seeds, with 10 highly conserved metabolites. Most of the differentially accumulated metabolites between unstratified and stratified seeds were enriched in purine metabolism, pyrimidine metabolism, flavone and flavonol biosynthesis, phenylpropanoid biosynthesis, and arginine biosynthesis pathways. Key phytohormones, abscisic acid, indole-3 acetic acid, and sinapic acid were differentially accumulated in the seeds and are predicted to regulate dormancy in D. involucrata. We have provided extensive metabolic information useful for future works on dove tree germination study.  相似文献   

19.
The effects of 4 chemicals on the germination promotion of stratified and unstratified seeds of loblolly pine (Pinus taeda) and baldcypress (Taxodium distichum) were studied. The chemicals used were gibberellic acid, kinetin, potassium nitrate and thiourea, each at 3 different concentrations. Stratification promoted the germination of both seed species. Certain concentrations of gibberellic acid, potassium nitrate and thiourea improved the germination of unstratified loblolly pine and baldcypress seeds while kinetin had no stimulatory effect. All 4 chemicals at specific concentrations promoted the germination of loblolly pine seeds stratified for a short period of time. Considering both speed and completeness of germination, best results were obtained when 21-day stratified seeds were treated with either gibberellic acid (100 mg/1) or kinetin (10 mg/1). In baldcypress, on the other hand, none of these chemicals had any stimulatory effect on the germination of stratified seeds. Germination of both species of seeds was either partially or completely inhibited by the highest concentration of thiourea (30,000 mg/1) used.  相似文献   

20.
Seeds of both Salsola imbricata and Haloxylon salicornicum have high germination level and germination speed, and form a transient seed bank in nature. The impacts of storage period and condition on germination level and speed were assessed in the two species. Storage for three months significantly increased both germination level and speed of seeds stored under the different conditions, compared to that of fresh seeds. In both species, nine months storage did not affect germination percentage in cold storage seeds, but completely inhibited it in field seeds. Storage for longer time in room and warm temperatures resulted in significant reduction or complete inhibition in the germination of the two species, so this was more pronounced in H. salicornicum. Storage significantly increased germinate rate index of seeds stored in all conditions till 17 months in S. imbricata and till 12 months in H. salicornicum. In both species, fridge storage had little effects on final germination and germination speed of seeds incubated at the different temperatures, compared to fresh seeds. However, room temperature and warm storages significantly reduced final germination and germination speed at the different temperatures, so the reduction was more pronounced at 35 °C, especially in H. salicornicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号