首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The wealth of information on protein structure has led to a variety of statistical analyses of the role played by individual amino acid types in the protein fold. In particular, the contact propensities between the various amino acids can be converted into folding energies that have proved useful in structure prediction. The present study addresses the relationship of protein folding propensities to the evolutionary relationship between residues.  相似文献   

2.

Background  

Protein topology representations such as residue contact maps are an important intermediate step towards ab initio prediction of protein structure. Although improvements have occurred over the last years, the problem of accurately predicting residue contact maps from primary sequences is still largely unsolved. Among the reasons for this are the unbalanced nature of the problem (with far fewer examples of contacts than non-contacts), the formidable challenge of capturing long-range interactions in the maps, the intrinsic difficulty of mapping one-dimensional input sequences into two-dimensional output maps.  相似文献   

3.
4.

Background  

Considering energy function to detect a correct protein fold from incorrect ones is very important for protein structure prediction and protein folding. Knowledge-based mean force potentials are certainly the most popular type of interaction function for protein threading. They are derived from statistical analyses of interacting groups in experimentally determined protein structures. These potentials are developed at the atom or the amino acid level. Based on orientation dependent contact area, a new type of knowledge-based mean force potential has been developed.  相似文献   

5.

Background  

The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships.  相似文献   

6.

Background  

Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C β atoms in other residues within a sphere around the C β atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence.  相似文献   

7.

Background  

Many biological processes involve the physical interaction between protein domains. Understanding these functional associations requires knowledge of the molecular structure. Experimental investigations though present considerable difficulties and there is therefore a need for accurate and reliable computational methods. In this paper we present a novel method that seeks to dock protein domains using a contact map representation. Rather than providing a full three dimensional model of the complex, the method predicts contacting residues across the interface. We use a scoring function that combines structural, physicochemical and evolutionary information, where each potential residue contact is assigned a value according to the scoring function and the hypothesis is that the real configuration of contacts is the one that maximizes the score. The search is performed with a simulated annealing algorithm directly in contact space.  相似文献   

8.

Background  

The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread.  相似文献   

9.

Background  

Protein inter-residue contacts play a crucial role in the determination and prediction of protein structures. Previous studies on contact prediction indicate that although template-based consensus methods outperform sequence-based methods on targets with typical templates, such consensus methods perform poorly on new fold targets. However, we find out that even for new fold targets, the models generated by threading programs can contain many true contacts. The challenge is how to identify them.  相似文献   

10.

Background  

Predicting protein residue-residue contacts is an important 2D prediction task. It is useful for ab initio structure prediction and understanding protein folding. In spite of steady progress over the past decade, contact prediction remains still largely unsolved.  相似文献   

11.

Aims

To evaluate the performance of four sampling methods [contact plates, electrostatic wipes (wipe), swabs and a novel roller sampler] for recovery of Staphylococcus aureus from a stainless steel surface.

Methods and Results

Stainless steel test plates were inoculated with Staph. aureus, dried for 24 h and sampled using each of the four methods. Samples were either incubated directly (roller, contact plate) or processed using elution and membrane filtration (swab, wipe). Performance was assessed by calculating the apparent sampling efficiency (ASE), analytical sensitivity (Sn) and percentage of replications with positive growth. The wipe demonstrated the best performance across all inoculating concentrations (ASE48 h = 18%; Sn48 h = 7 CFU per 100 cm2). The swab performed well when corrected for area actually sampled (ASE48 h = 24%; Sn48 h = 76 CFU per 100 cm2). Of the contact‐based methods, the newly developed roller sampler outperformed the contact plate (roller: ASE48 h = 10%; Sn48 h = 17 CFU per 100 cm2; contact plate: ASE48 h = 0·04%; Sn48 h = 1412 CFU per 100 cm2); both contact samplers performed better at higher inoculating concentrations (6E3 CFU per 100 cm2 for the roller and 6E6 CFU per 100 cm2 for the contact plate). Overall, the electrostatic wipe produced the highest number of replications resulting in positive growth (74%24 h, 91%48 h).

Conclusions

This study demonstrates that selection of the sampling method must be carefully considered, given that different methods have varying performance.

Significance and Impact of the Study

This is the first study assessing static wipes for sampling and one that uses a more real‐world‐relevant 24‐h drying time. The results help with infection control, and environmental health professionals choose better sampling methodologies.  相似文献   

12.

Background  

Mitochondrial DNA sequencing increasingly results in the recognition of genetically divergent, but morphologically cryptic lineages. Species delimitation approaches that rely on multiple lines of evidence in areas of co-occurrence are particularly powerful to infer their specific status. We investigated the species boundaries of two cryptic lineages of the land snail genus Trochulus in a contact zone, using mitochondrial and nuclear DNA marker as well as shell morphometrics.  相似文献   

13.

Background  

Estimators of free energies are routinely used to judge the quality of protein structural models. As these estimators still present inaccuracies, they are frequently evaluated by discriminating native or native-like conformations from large ensembles of so-called decoy structures.  相似文献   

14.

Background  

In human and non-human primates, migratory trophoblasts penetrate the uterine epithelium, invade uterine matrix, and enter the uterine vasculature. Invasive trophoblasts show increased expression of β1 integrin. Since trophoblast migration within the uterine vasculature involves trophoblast attachment to endothelial cells lining the vessel walls, this raises the possibility that cell-cell contact and/or factors released by endothelial cells could regulate trophoblast integrin expression. To test this, we used an in vitro system consisting of early gestation macaque trophoblasts co-cultured on top of uterine microvascular endothelial cells.  相似文献   

15.

Background

Protein residue-residue contact prediction is important for protein model generation and model evaluation. Here we develop a conformation ensemble approach to improve residue-residue contact prediction. We collect a number of structural models stemming from a variety of methods and implementations. The various models capture slightly different conformations and contain complementary information which can be pooled together to capture recurrent, and therefore more likely, residue-residue contacts.

Results

We applied our conformation ensemble approach to free modeling targets from both CASP8 and CASP9. Given a diverse ensemble of models, the method is able to achieve accuracies of. 48 for the top L/5 medium range contacts and. 36 for the top L/5 long range contacts for CASP8 targets (L being the target domain length). When applied to targets from CASP9, the accuracies of the top L/5 medium and long range contact predictions were. 34 and. 30 respectively.

Conclusions

When operating on a moderately diverse ensemble of models, the conformation ensemble approach is an effective means to identify medium and long range residue-residue contacts. An immediate benefit of the method is that when tied with a scoring scheme, it can be used to successfully rank models.  相似文献   

16.
17.

Background

The spread of infectious diseases from person to person is determined by the frequency and nature of contacts between infected and susceptible members of the population. Although there is a long history of using mathematical models to understand these transmission dynamics, there are still remarkably little empirical data on contact behaviors with which to parameterize these models. Even starker is the almost complete absence of data from developing countries. We sought to address this knowledge gap by conducting a household based social contact diary in rural Vietnam.

Methods and Findings

A diary based survey of social contact patterns was conducted in a household-structured community cohort in North Vietnam in 2007. We used generalized estimating equations to model the number of contacts while taking into account the household sampling design, and used weighting to balance the household size and age distribution towards the Vietnamese population. We recorded 6675 contacts from 865 participants in 264 different households and found that mixing patterns were assortative by age but were more homogenous than observed in a recent European study. We also observed that physical contacts were more concentrated in the home setting in Vietnam than in Europe but the overall level of physical contact was lower. A model of individual versus household vaccination strategies revealed no difference between strategies in the impact on R 0.

Conclusions and Significance

This work is the first to estimate contact patterns relevant to the spread of infections transmitted from person to person by non-sexual routes in a developing country setting. The results show interesting similarities and differences from European data and demonstrate the importance of context specific data.  相似文献   

18.

Background  

Several bacterial pathogens express antihost factors that likely decrease both their maximal growth rate (due to metabolic costs) as well as their mortality rate (by neutralizing host defenses). The pathogenic yersiniae make a huge metabolic investment expressing virulence proteins (referred to as Yops) that are directly injected into eukaryotic cells and that modulate host defense responses such as phagocytosis and stress-activated signaling pathways. Although host-cell contact enhanced Yop expression as well as the cellular activities of several Yops have recently been described, a clear link between these phenomena and bacterial survival and/or proliferation remains to be established  相似文献   

19.
Marathe A  Lewis B  Chen J  Eubank S 《PloS one》2011,6(8):e22461

Objective

Study the influence of household contact structure on the spread of an influenza-like illness. Examine whether changes to in-home care giving arrangements can significantly affect the household transmission counts.

Method

We simulate two different behaviors for the symptomatic person; either s/he remains at home in contact with everyone else in the household or s/he remains at home in contact with only the primary caregiver in the household. The two different cases are referred to as full mixing and single caregiver, respectively.

Results

The results show that the household’s cumulative transmission count is lower in case of a single caregiver configuration than in the full mixing case. The household transmissions vary almost linearly with the household size in both single caregiver and full mixing cases. However the difference in household transmissions due to the difference in household structure grows with the household size especially in case of moderate flu.

Conclusions

These results suggest that details about human behavior and household structure do matter in epidemiological models. The policy of home isolation of the sick has significant effect on the household transmission count depending upon the household size.  相似文献   

20.

Background

Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6–12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices.

Methods and Findings

Data on face-to-face interactions were collected on Thursday, October 1st and Friday, October 2nd 2009. We recorded 77,602 contact events between 242 individuals (232 children and 10 teachers). In this setting, each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis.

Conclusions

We report on important properties of the contact patterns between school children that are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号