首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitogenic activity of anti-CD3 mouse monoclonal antibodies (mAb) in cultures of human peripheral blood mononuclear cells (PBMC) depends on the ability of the mAb to interact with CD3 molecules on the T cells, and with Fc receptors (FcR) on monocytes. Two types of FcR with distinct specificity for murine (m) IgG subclasses are involved: a 72-kDa receptor (FcRI) binds mIgG2a and a 40-kDa receptor (FcRII) binds mIgG1. In this study we examined the mitogenic activity of mIgG3 anti-CD3 mAb RIV9. In cultures of human PBMC, the mAb induced T cell proliferation and interleukin 2 production. We found that subjects, unresponsive to mIgG2a anti-CD3 (e.g., OKT3), were also RIV9 nonresponders. In contrast, nonresponders to mIgG1 anti-CD3 (e.g., anti-Leu4) had a normal response to RIV9. Our results therefore suggested that anti-CD3 mAb of the mIgG2a and mIgG3 subclass bind to the same monocytic FcR. Human monomeric IgG, which has been shown to bind to FcRI only, blocked T cell proliferation induced by mIgG2a and mIgG3 anti-CD3, but had no effect on T cell proliferation induced by mIgG1 anti-CD3. In contrast, a mAb (IV.3) to FcRII, which blocks ligand binding of the receptor, blocked the mitogenic activity of mIgG1 anti-CD3 antibodies, but had no effect on T cell proliferation induced by mIgG3 anti-CD3 or by mIgG2a anti-CD3. Binding of RIV9 to FcR of responder monocytes could be demonstrated in immunofluorescence. Monocytes from the RIV9 nonresponder subjects however were unable to bind the Fc portion of this antibody. The binding of fluorescein (FITC)-conjugated mIgG3 or FITC-conjugated mIgG2a to responder monocytes could be inhibited by human monomeric IgG and by mIgG2a and mIgG3, but not by the mAb to FcRII. The results demonstrate that mIgG3 binds to FcRI on human monocytes and that this binding is needed for the mitogenic activity of mIgG3 anti-CD3.  相似文献   

2.
The effect of iC3b receptor (CR3)-mediated phagocytosis on the expression of CR (C3b receptor, CR3) and IgG FcR (FcRI, FcRII) has been investigated by using serum-opsonized zymosan as a multivalent ligand for CR3. Sixteen hours after a short (1-h) pretreatment of human monocyte monolayers with zymosan opsonized with human AB serum (250 micrograms/ml), CR3 expression (as assessed by flow cytometric analysis with mAb Mo1) was significantly reduced by 59 +/- 3% (mean +/- SEM, n = 15, p less than 0.001). Concomitant with CR3 down modulation, FcR binding activity (as assessed by binding of IgG-coated E) was also found to be decreased to 41 +/- 4% of control (n = 7, p less than 0.001). Reduced FcR function was paralleled by a decrease in the expression of FcRI (as assessed with mAb 32.2). This FcRI modulation was not caused by zymosan-bound IgG because zymosan opsonized with agammaglobulinemic serum equally down regulated CR3 and FcRI expression. Pretreatment with zymosan opsonized with human AB serum, however, did not change the expression of other IgG and C-binding sites such as FcRII (examined with mAb IV.3 and 2E1) and CR1 (assessed with mAb 57F) as well as of unrelated cell membrane structures (beta 2m, MHC class II). In contrast, co-modulation for FcR function and CR3 expression induced by polymeric IgG is accompanied by a decreased expression of FcRII. These data indicate that interaction of a specific receptor with its ligand not only changes the expression of the receptor triggered, but has also a modulating effect on other receptor systems on the same cell.  相似文献   

3.
Human monocytes can be triggered to antibody-dependent cell-mediated cytotoxicity (ADCC) by murine antibodies. In this study, a series of H chain isotype switch variant antibodies against glycophorin A on human RBC was used to study the influence of isotype on the induction of ADCC. Furthermore, it was studied whether the functional heterogeneity in responsiveness to IgG1 and IgG2b anti-CD3 antibodies, as found among different donors in T cell proliferation induction experiments, was reflected in ADCC. Whereas IgG2a induced ADCC to the same extent in monocytes from all donors, IgG1 showed a heterogeneous pattern, which corresponded to the heterogeneity in T cell proliferation studies. IgG1 anti-CD3 nonresponder monocytes could, however, be induced to ADCC by IgG1 antiglycophorin, although they needed a much higher antibody density on the target cell than did responder monocytes. IgG2b antiglycophorin at a high density induced ADCC in monocytes from all donors irrespective of responsiveness to IgG2b anti-CD3, whereas IgE and IgA antiglycophorin were barely effective in monocytes from all donors. By specific blocking with mAb, the FcR that were involved in ADCC directed by the various isotypes were characterized. ADCC by IgG2a was predominantly mediated by FcRI and could be specifically enhanced by culturing the monocytes with rIFN-gamma. ADCC by IgG1 was predominantly mediated through FcRII in both anti-CD3 responder and nonresponder monocytes. FcRII was also involved in ADCC by IgG2b, although other receptors seemed to contribute significantly to ADCC. When FcRII or FcRI were blocked, IgG1 and IgG2a could also functionally interact with FcRI and FcRII, respectively, provided that the target cells were sensitized to a high degree. These findings indicate that FcRI and both forms of FcRII can mediate cytotoxicity and that the specificity of human FcR for murine isotypes is relative.  相似文献   

4.
Human monocytes and U937 cells bear two distinct Fc receptors for IgG   总被引:33,自引:0,他引:33  
Several convergent lines of evidence have led us to propose that human monocytes and the related cell line U937 possess a second class of IgG Fc receptor (FcR) in addition to the 72-Kd high affinity FcR previously described. IgG affinity purification from detergent lysates of surface radiolabeled U937 cells has yielded both a 40-Kd IgG-binding membrane protein (p40) and the 72-Kd FcR protein. By the same procedure, only the p40 was isolated from the erythroblast cell line K562 and from the B cell lines, Daudi and Raji. Serologic cross-reactivity between the 40-Kd FcR on U937 and Daudi cells was demonstrated using a goat anti-FcR antiserum. A murine (m) monoclonal antibody, raised against the FcR of K562 cells, precipitated the 40-Kd FcR from lysates of U937 and K562 cells but not from Daudi or Raji cells. This antibody, referred to as anti-p40 (IV.3), selectively inhibited the binding of murine IgG1-coated erythrocytes to U937 cells, whereas monomeric human IgG selectively inhibited binding of human anti-Rh(D)-coated erythrocytes to U937 cells. Both Daudi and U937 cells mediated mIgG1 anti-T3 (Leu-4)-induced stimulation of T lymphocytes. In contrast, mIgG2a anti-T3 (OKT3)-induced stimulation was supported effectively by U937 cells but only modestly by Daudi cells. Intact IgG or Fab fragments of anti-p40 (IV.3) blocked mIgG1 anti-T3 (Leu-4) stimulation but not mIgG2a anti-T3 (OKT3) stimulation of T cells; monomeric human IgG blocked only OKT3-induced stimulation. The simplest interpretation of these results is that human monocytes and U937 cells bear two classes of IgG FcR, one of 72 Kd and the other, as described above, of 40 Kd. We propose that the 72-Kd FcR mediates rosette formation with red cells coated by human anti-Rh IgG as well as T cell stimulation by mIgG2a anti-T3 (OKT3) and that the 40-Kd FcR mediates rosette formation with erythrocytes bearing mIgG1 as well as T cell stimulation by mIgG1 anti-T3 (Leu-4). Furthermore, we suggest that these two FcR are the human homologues of the murine macrophage FcRI (binding mIgG2a) and FcRII (binding mIgG2b/1).  相似文献   

5.
Human C-reactive protein (CRP) is an acute phase reactant that is opsonic and an activator of macrophage tumoricidal function. CRP also activates the classical C cascade. These activities suggest that CRP might interact with monocytes/macrophages via specific receptors in a manner analogous to the interaction of IgG with FcR. With the use of radio-labeled human CRP, we have observed specific binding of CRP to human blood monocytes and the human monocytic cell line U-937. Binding was saturable at a pathophysiologic concentration of CRP, with an estimated KD of 9.5 x 10(-8) M and 3.6 x 10(5) binding sites/cell. Specific binding was inhibited by polyclonal human IgG as well as an IgG1 myeloma. In the converse experiment, CRP failed to inhibit specific [125I]IgG binding. The mAb IV.3, which inhibits binding of IgG immune complexes to FcRII, did not inhibit CRP binding. A 100-fold excess of phosphorylcholine or the phosphorylcholine binding peptide of CRP (residues 47-63) failed to inhibit binding. Although human rIFN-gamma and PMA increased FcRI expression, these reagents had no affect on CRP receptor expression. A single membrane protein of 38 to 41 kDa from U-937 cells was chemically cross-linked to [125I]CRP; the cross-linking was inhibited by human IgG1 but not the IV.3 mAb. Furthermore, two membrane proteins with a Mr of 38 to 40 kDa and 58 to 60 kDa were isolated by CRP ligand-affinity chromatography. These proteins were of a distinct size from those isolated for FcRI from an IgG ligand matrix. These studies demonstrate specific binding of human CRP to a human monocytic cell line via receptors that are distinct from the IgG FcR and implicate CRP in nonspecific, preimmune host defense reaction mediated by cells of the monocytic lineage.  相似文献   

6.
T cell activation induced by mouse anti-CD3 mAb has shown to be dependent on the Ig isotype of these antibodies. A study of isotype dependency of human antibodies, however, seems more relevant to human effector systems, especially in view of the availability of humanized antibodies for clinical applications. We constructed a panel of mouse and mouse/human chimeric anti-CD3 mAb, which differ only in their CH region and hence have identical binding sites and affinity. By using these antibodies, we now studied their ability to induce T cell proliferation in human PBMC and analyzed the classes of IgG FcR involved in these responses. The human (h)IgG1, hIgG3, and hIgG4, as well as mouse (m)IgG2a and mIgG3 anti-CD3 mAb induced an Fc gamma RI (CD64)-dependent T cell proliferation in all donors. Activation with hIgG2 and mIgG1 anti-CD3 mAb was observed to be mediated via the low affinity Fc gamma RII (CD32). It was found that leukocytes in a normal donor population display a functional polymorphism with respect to hIgG2 anti-CD3 responsiveness. This polymorphism was found to be inversely related to the previously defined Fc gamma RII-polymorphism to mIgG1 anti-CD3 mAb. Monocytes expressing the Fc gamma RII mIgG1 low responder (LR) allele support hIgG2 anti-CD3 induced T cell proliferation efficiently, whereas cells homozygous for the Fc gamma RII mIgG1 high responder (HR) allele do not. This observation could be confirmed in T cell activation studies using hFc gamma RIIa-transfected mouse fibroblasts, expressing either the mIgG1 anti-CD3 HR or LR Fc gamma RII-encoding cDNA.  相似文献   

7.
Leukocyte adhesion deficiency (LAD) is a hereditary disease characterized by defective expression of leukocyte adhesion glycoproteins; lymphocyte function-associated Ag-1 (CD11a/CD18), CR3 (CD11b/CD18) and p150,95 (CD11c/CD18). Granulocytes, monocytes, and lymphocytes of patients with LAD show profoundly defective in vivo and in vitro adherence-dependent immune functions. We investigated the expression of FcR for IgG on polymorphonuclear cells (PMN) and monocytes from patients with LAD, and their luminol- and lucigenin-enhanced chemiluminescence production in response to SRBC sensitized with murine (m) IgG2a and IgG2b. Unstimulated patient PMN showed an enhanced chemiluminescence in response to mIgG2a-SRBC and an increased phagocytosis of mIgG2a-SRBC. The up-regulated functions were inhibited by monomeric human IgG in a dose-dependent manner, which was attributed to an increase in expression of FcRI on patient PMN, as shown by flow cytometry using monoclonal antibody, 32.2, specific for human FcRI. In contrast, neither the expression of FcR on the monocytes of LAD patients nor their FcR-mediated functions were different from those of controls.  相似文献   

8.
Human alveolar macrophage have three distinct receptors for IgG: FcRI, FcRII, and FcRIII. In order to compare the ability of these receptors to mediate target cell lysis, three different assay systems were examined. First, we studied lysis of chicken E (CE) opsonized with heteroantibodies, which are synthetic antibodies composed of Fab fragments with anti-FcR activity covalently linked to Fab fragments with anti-CE activity. We found alveolar macrophage readily lysed heteroantibody-opsonized CE via each of the three FcR classes (FcRI, 20 +/- 5%; FcRII, 27 +/- 7%; and FcRIII, 13 +/- 13%, p less than 0.05). Non-FcR-dependent lysis of anti-beta 2-microglobulin x anti-CE heteroantibody-opsonized CE was not detected. Second, lysis of hybridoma cell lines bearing anti-FcR antibodies on their cell surface was examined to assess killing of "tumor-like" target cells. Whereas peripheral blood monocytes and lymphocytes were able to lyse hybridoma cell lines bearing surface anti-FcR mAb, alveolar macrophages were not. Third, activity of alveolar macrophage FcR was examined in a conventional antibody-dependent cellular cytotoxicity assay by using O+ (R1,R2) human RBC opsonized with human anti-D and anti-CD serum as target cells. We found lysis of anti-D and anti-CD opsonized human RBC was mediated exclusively via FcRI. No activity of FcRII or FcRIII was detected in these latter assays even if performed under conditions that impair FcRI activity. Thus, all three FcR present on alveolar macrophage mediate lysis of heteroantibody-opsonized CE; in contrast, with the use of a conventional antibody-dependent cellular cytotoxicity assay, only FcRI activity was detected. We were unable to demonstrate lysis of anti-FcR-bearing hybridoma cell lines by alveolar macrophages.  相似文献   

9.
We have defined two distinct classes of IgG Fc receptors (FcR) on cells of a human monocytic line (U937) by analyzing the direct binding of murine IgG subclasses in medium of low ionic strength. Four lines of evidence support this contention. The binding of aggregated murine IgG2b (AggmIgG2b) to U937 and Daudi cells was enhanced at low ionic strength, whereas monomeric murine IgG2a (mIgG2a) did not bind to Daudi cells and its high affinity binding to U937 cells was unaffected by changes in ionic strength. Double reciprocal inhibition experiments with U937 cells indicated that the binding of both ligands was inhibited 30 to 135 times more efficiently by the homologous ligand than by the heterologous one. That is, the binding of 125I-AggmIgG2b was inhibited 50% by 3.5 micrograms/ml of AggmIgG2b and 100 micrograms/ml of mIgG2a. Similarly, the binding of 125I-mIgG2a was inhibited 50% by 2.5 micrograms/ml of mIgG2a and only 44% by 243 micrograms/ml of AggmIgG2b. A monoclonal antibody of the IgG2b subclass raised against an IgG FcR on K562 cells inhibited binding to U937 cells of AggmIgG2b but not of mIgG2a. Trypsinization of U937 cells abrogated by 32% the binding of mIgG2a but did not affect the binding of AggmIgG2b. Human IgG inhibited binding of both AggmIgG2b and mIgG2a to U937 cells. We propose that the newly recognized FcR that binds AggmIgG2b is the human homologue of the murine macrophage IgG2b/1 FcR (FcRII), and that the previously described 72,000 dalton high-affinity FcR on U937 cells that binds mIgG2a is the human equivalent of the murine macrophage IgG2a FcR (FcRI).  相似文献   

10.
We investigated the effect of polymorphonuclear neutrophils (PMN) on anti-CD3 mAb (OKT3 and anti-Leu4)-mediated T cell activation. In the absence of monocytes, purified E-rosette-positive cells (further referred to as "T cells") require either solid-phase bound anti-CD3 or the combination of both a high concentration of soluble anti-CD3 and exogenous recombinant interleukin 2 (rIL-2) to proliferate. PMN cannot sustain T cell proliferation with soluble anti-CD3, but they markedly boost proliferation in the presence of soluble anti-CD3 and rIL-2. When PMN were added to T cell cultures stimulated with anti-CD3, this resulted in IL-2 receptor (IL-2R) expression and CD3 modulation. The mechanism of enhancement of anti-CD3-induced IL-2-responsiveness by PMN was further analyzed. A cellular T cell-PMN interaction was found to play a critical role and this was mediated through PMN Fc receptors (FcR). PMN bear two types of low-affinity FcR (FcRII and FcRIII). FcRII is known to bind mIgG1 (e.g., anti-Leu4) and FcRIII binds mIgG2a (e.g., OKT3). FcR involvement was demonstrated by two observations. Anti-FcRII mAb IV.3 inhibited the PMN signal for T cell activation with anti-Leu4. PMN bearing the second variant of FcRII which is unable to bind mIgG1 failed to promote anti-Leu4/IL-2-mediated T cell proliferation. Thus, PMN potentiate T cell responsiveness to IL-2 in the presence of anti-CD3 mAb and this potentiation by PMN requires interaction of anti-CD3 with PMN-FcR.  相似文献   

11.
Three classes of FcR have been defined on human myeloid cells by their reactivity with mAb; FcRI (mAb 32); FcRII (mAb IV3); and FcRIII (mAb 3G8). We have quantitated the expression of each FcR on human myeloid leukemia cells and cell lines (KG-1, HL-60, U937, and K562). Detailed analysis of FcR surface expression is provided for the U937 cell line after exposure to CSF and cytokines. Increased expression of FcRI and FcRII occurred at 72 h in cells exposed to GCT or Mo cell line-conditioned medium as well as to medium from PHA-treated mononuclear cells. The augmentation of FcRII required protein synthesis and was diminished by a neutralizing antibody to granulocyte-macrophage CSF. We also show that fractions containing natural granulocyte CSF or granulocyte-macrophage CSF as well as r-granulocyte and r-granulocyte-macrophage CSF are capable of inducing FcRII on these cells, whereas other cytokines such as IL-1 and IL-2, TNF-alpha, INF-gamma and macrophages CSF failed to do so.  相似文献   

12.
13.
In man, three distinct classes of receptors for the Fc fragments of IgG (FcRI, II, III) have been defined. The FcRI has a Mr of about 72 kDa, binds human IgG-coated E, and is recognized by mAb such as 32. The FcRII has a Mr of 40 kDa, binds murine IgG1-coated E, and reacts with the mAb IV.3 and CIKM5, which recognize CDw32 moieties. Lastly, the FcRIII has a Mr of 50 to 70 kDa and is recognized by anti-CD16 mAb. In the present study we have shown that i) only murine IgG1-coated E form rosettes with 49 +/- 1.5% (mean +/- SEM, n = 9) of CD1a+ epidermal cells (EC) (which represent Langerhans and indeterminate cells) and that ii) the mAb anti-FcRII CIKM5 prevents this rosette formation. Among the mAb reacting with the three different types of FcR, only those recognizing FcRII i) stain about 55 +/- 1.5% (mean +/- SEM, n = 9) of the CD1a+ EC and ii) reveal the presence of dendritic cells in epidermal sheets obtained by suction blister. Under the electron microscope i) apparently all the cells forming rosettes or reacting with the gold-labeled anti-FcRII mAb (CIKM5 or the F(ab) fragment of IV.3) contained Birbeck granules and ii) the gold-labeled mAb were internalized in unfixed Langerhans cells by receptor-mediated endocytosis and accumulated in lysosomes. Labeling by the anti-FcRII mAb of the CD1a+ cells in suspension disappears after 48 h of culture. All these observations strongly suggest that CD1a+ EC express only the FcRII. This conclusion was confirmed by immunoprecipitation experiments, whereas no specific immunoprecipitate was noted with the anti-FcRI or anti-FcRIII mAb, the anti-FcRII mAb immunoprecipitated a protein of Mr 40 kDa.  相似文献   

14.
We studied the interaction of bispecific mouse mAb with human IgG Fc receptors, and assessed their ability to activate the monocytic cell line U937. Binding of monomeric hybrid anti-HuIgA1/HRP mAb to the high-affinity IgG receptor, Fc gamma RI, on U937 cells was only observed when mAb with one or more mIgG2a H chains (hybrid mIgG1-2a, mIgG2a-2b, and mIgG2a-2a) were used. These Fc gamma RI-bound hybrid mAb were capable of enhancing the internal free cytosolic Ca2+ concentration ([Ca2+]i) in U937 cells only when bound mIgG were cross-linked using F(ab')2 fragments of goat anti-mIg antibody. A hybrid mIgG1-2a mAb were cross-linked using goat anti-mIgG1 antibody, showing that the hybrid mAb themselves mediate the induction of Ca2+ increase. Remarkably, anti-Fc gamma RII mAb IV.3 was able to inhibit the Ca2+ increase induced via mIgG2a-1 or mIgG1-2a hybrid mAb completely, despite the fact that we could not detect any effect of IV.3 on binding of monomeric hybrid mIgG1-2a or mIgG2a-1 mAb to U937. The hybrid mAb were also able to induce lysis of HuIgA1-coated E using U937 effector cells. This lysis was completely inhibited by preincubation of U937 cells with mIgG2a mAb TB-3, which blocks Fc gamma RI via its Fc-part ("Kurlander phenomenon"). In contrast, Fc gamma RII-blocking mAb IV.3 and CIKM5 caused a significant enhancement of the antibody-dependent cellular cytotoxicity (ADCC) activity mediated by hybrid mIgG1-2a and mIgG2a-2b mAb. This enhancement did not occur when the parental anti-HuIgA1/2a or the hybrid anti-HuIgA1/HRP/2a-2a mAb were evaluated for ADCC activity. These findings suggest that hybrid mAb not only can bind to Fc gamma RI, but can mediate functional activation of myeloid cells. Given the effect of mAb IV.3 on [Ca2+]i changes and ADCC triggered through IgG1-2a mAb, we suggest that Fc gamma RII may have a role in the regulation of Fc gamma RI-triggered functions or signaling.  相似文献   

15.
Mechanism of human monocyte activation via the 40-kDa Fc receptor for IgG   总被引:5,自引:0,他引:5  
It is shown that a mAb specific for the human 40-kDa FcR (FcRII) leads to activation of human monocytic cells but that extensive cross-linking of the receptor is required. Calcium mobilization can be induced in immature monocytic cells (undifferentiated U937 cells) and peripheral blood monocytes with an intact IgG1 anti-FcRII antibody (CIKM5) but not by F(ab')2 fragments of this antibody. The intact antibody can bind in a tripartite manner by its two F(ab') sites and its Fc-binding site whereas the F(ab')2 fragments of this antibody can only bind in a divalent fashion. A rise in intracellular free calcium ion concentration occurs when F(ab')2 fragments are cross-linked with F(ab')2 anti-mouse Ig indicating that more extensive cross-linking of FcRII is required rather than an obligatory requirement for an Fc-FcRII interaction. Calcium mobilization in response to intact or cross-linked F(ab')2 fragments of CIKM5 is associated with superoxide production only in IFN-gamma-primed peripheral blood monocytes and IFN-gamma differentiated U937 cells indicating that the activation signal produced via FcRII is inadequate to fully stimulate non-"primed" cells. A second mAb reactive with FcRII (2E1) does not cause calcium mobilization in monocytes or U937 cells, and partially blocks the effects of CIKM5. 2E1 also blocks CIKM5 superoxide production in IFN-gamma-primed monocytes and differentiated U937 cells. This may be explained in part by the fact that 2E1 is an IgG2a antibody and can only participate in bipartite binding with FcRII. When 2E1 is cross-linked with F(ab')2 anti-mouse Ig there is a small calcium response. This does not cause superoxide generation in IFN-primed monocytes but does do so in IFN-gamma differentiated U937 cells. FcRII is also expressed on granulocytes and some B cells but the effects of cross-linking the receptor on these cells differ from those seen in monocytes.  相似文献   

16.
Distribution of FcR II, FcRIII, and FcR alpha on murine splenic B cells was examined by using FITC-labeled heat-aggregated IgG of each subclass and IgA. Almost 60 to 80% of B cells expressed both FcRII and FcRIII. However, FcR alpha was expressed on only a small proportion (6%) of B cells that co-expressed FcRII. By inhibition assays with the use of cold IgG of each subclass and IgA in addition to anti-FcRII mAb (2.4G2), it was found that IgG1, IgG2a, and IgG2b utilized the same receptor (FcRII), whereas IgG3 and IgA bound only to their unique receptors, FcRIII and FcR alpha, respectively. Immune complexes IC prepared by IgG1, IgG2a, IgG2b, and IgA anti-TNP mAb with TNP-coupled SRBC inhibited the polyclonal Ig secretion and proliferative responses of B cells stimulated with either IL-4 or LPS. The inhibition of B cell activation was associated with the blockade of the membrane depolarization. Moreover, IC prepared by these antibodies caused production of suppressive B cell factor (SBF) as is the case with rabbit IgG antibody to SRBC, and SBF thus prepared regulated antibody responses in an isotype-nonspecific manner. In contrast, no inhibition for these responses or production of SBF was attained by the IC of IgG3 antibody. We concluded that FcRII and FcR alpha mediates a suppressive signal for B cells by acting on the initial step of activation, whereas FcRIII lacks this activity.  相似文献   

17.
Here we have used hybrid mouse IgG1-2a and IgG2a-2b mAb to demonstrate that the interaction between the human high-affinity IgG FcR (huFc gamma RI) and monomeric mouse IgG2a mAb requires only one of the mIgG2a H chains. Recently, we reported a method for the generation and isolation of hybrid hybridomas, producing hybrid mouse mAb. Using this method we have obtained hybrid mouse (m)IgG1-2a and mIgG2a-2b mAb reacting with either horseradish peroxidase or human IgA1 (monospecific mAb) or with both Ag (bispecific mAb). Using protein A- or Ag-affinity chromatography purified hybrid mAb, we demonstrate here the binding of monomeric hybrid mIgG1-2a and mIgG2a-2b mAb to huFc gamma R on U937 cells, whereas no binding could be observed to the K562 cell line. Monomeric mouse IgG2a mAb and human IgG1 were found to be capable of inhibiting the binding of these hybrid mIgG1-2a and mIgG2a-2b mAb in a manner similar to the way they inhibited binding of monomeric mIgG2a mAb to U937 cells; this is in contrast to our findings for mIgG1 and mIgG2b mAb which did not inhibit the binding of both hybrid mAb. In addition, the binding of the hybrid mIgG1-2a and mIgG2a-2b mAb could be blocked by mAb TB-3, which is known to block huFc gamma RI-mediated binding by the "Kurlander phenomenon" and not by the anti-Fc gamma RII mAb CIKM5 and IV.3. These results indicate that both types of monomeric hybrid mAb are bound by the huFc gamma RI. Scatchard plots of mIgG2a, hybrid mIgG1-2a, and mIgG2a-2b mAb binding revealed similar numbers of binding sites and similar affinity constants of huFc gamma RI for these mAb (0.9 to 3.6 x 10(8) M-1). These results suggest that huFc gamma RI, present on the U937 cell line, are capable of binding monomeric hybrid mIgG1-2a and mIgG2a-2b mAb, and that this interaction requires only one of the mIgG2a H chains.  相似文献   

18.
It has previously been demonstrated that about 30% of healthy Caucasian subjects are "nonresponders" in assays of the mitogenic activity of monoclonal mouse IgG1 (mIgG1) anti-CD3 antibodies (e.g., anti-Leu 4 and UCHT-1), and that this unresponsiveness is due to lack of monocyte helper function. In an immunofluorescence assay with fluorescence-activated cell sorter analysis, we studied the binding of phycoerythrin-conjugated anti-Leu 4 to monocytes from responders and nonresponders. Interaction was observed with monocytes from responders only, and was blocked by a murine monoclonal antibody (IV.3) directed to an epitope on the 40-kDa low affinity Fc receptor (FcRII). This indicates that the interaction represents binding of the Fc part of phycoerythrin-conjugated anti-Leu 4 to FcRII on responder monocytes. Indirect immunofluorescence with antibody IV.3 demonstrated, however, that monocytes from both responders and nonresponders express similar levels of FcRII. Thus, nonresponder monocytes apparently express a variant FcRII which is unable to bind the Fc part of mIgG1 antibodies. The anti-FcRII antibody completely blocked anti-Leu 4-induced (but not OKT3 (mIgG2a)-induced) T cell proliferation in cultures of peripheral blood mononuclear cells from responders. The results provide direct evidence that monocytes from anti-Leu 4 responders, but not monocytes from anti-Leu 4 non-responders, are able to bind the Fc part of mIgG1 to FcRII, and that this interaction with FcRII is essential for the mitogenic activity of mIgG1 anti-CD3 antibodies.  相似文献   

19.
Neutrophils express two types of receptor for the Fc region of IgG, FcRII and FcRIII. Per neutrophil, 10,000 to 20,000 molecules of FcRII (40 kDa) and 100,000 to 200,000 molecules of FcRIII (50 to 80 kDa) are expressed. Via these receptors, neutrophils bind IgG complexes that contain more than one IgG molecule. This binding activates functional processes, such as the respiratory burst and phagocytosis. We studied the contribution of FcRII and FcRIII in the activation of these processes, using well-defined complexes (both large and small) in combination with mAb against FcRII and FcRIII. Small (dimeric) IgG complexes appeared to bind via FcRIII. However, binding to FcRIII alone, when FcRII is blocked by an anti-FcRII mAb, did not induce a respiratory burst. Induction of the respiratory burst by a large immune complex, such as Staphylococcus aureus Wood opsonized with IgG antibodies, was mediated by binding to FcRII, because it was blocked by an anti-FcRII mAb but not by an anti-FcRIII mAb. This indicates that these IgG-opsonized bacteria can cross-link FcRII and activate the cells without the need to adhere to the FcRIII. The respiratory burst induced by IgG-latex was not inhibited by an anti-FcRII mAb, because the avidity for FcRII of IgG-latex, a particle of the same size as a Staphylococcus but with a two to three times higher IgG content, is increased by its simultaneous binding to FcRIII. This enhanced avidity results in removal of anti-FcRII mAb from the FcRII by IgG-latex. This increased avidity of large complexes for FcRII, created by concurrent binding to FcRIII, is not necessary for activation of human neutrophils, because neutrophils from patients with paroxysmal nocturnal hemoglobinuria, with about 10% of the normal FcRIII expression, showed a normal metabolic response upon addition of IgG-latex. Phagocytosis of IgG-opsonized 14C-labeled S. aureus Wood was inhibited equally well by anti-FcRII mAb and by anti-FcRII in combination with anti-FcRIII mAb. Thus, FcRII is not only essential for the IgG-induced activation of the NADPH oxidase system, but also for the IgG-induced phagocytosis.  相似文献   

20.
FcRIII is not present on peripheral blood monocytes, but becomes expressed upon culturing and can be demonstrated on tissue macrophages. We studied the expression of FcRIII of cultured monocytes in detail and compared its structure with FcRIII of neutrophils and NK cells. The cell density of FcRIII reached a plateau within 3 days of culturing. During that time, the expression of FcRI and FcRIIa, also present on monocytes, did not change significantly. FcRIII on cultured monocytes lacked, as did NK cell FcRIII, the NA1-allotypic variant of the NA system present on the neutrophil FcRIII. Studies with glycosyl-phosphatidyl-inositol-specific phospholipase C and analysis of cells of patients with paroxysmal nocturnal hemoglobinuria revealed that FcRIII on cultured monocytes is not anchored by phosphatidyl-inositol-glycan in the cell membrane. Similarly, FcRIII on NK cells was resistant to glycosyl-phosphatidyl-inositol-specific phospholipase C treatment, suggesting that NK cell FcRIII is also not anchored by a phosphatidyl-inositol-glycan moiety, in contrast to neutrophil FcRIII. Analysis by SDS-PAGE showed that the FcRIII of cultured monocytes had a similar mobility as the FcRIII on NK cells, but was clearly distinct from neutrophil FcRIII. Treatment with N-glycanase showed that the protein backbone of deglycosylated FcRIII of cultured monocytes was similar to that of FcRIII of NK cells, but deglycosylated neutrophil FcRIII was different. Specific blocking of FcRIII of cultured monocytes with an anti-FcRIII mAb did not reduced the lytic action of the cultured monocytes towards sensitized erythrocytes. However, FcRIII was modulated from the cell surface by incubation with sensitized E, whereas non-FcR Ag were not. These findings indicate that FcRIII is involved in binding of immune complexes, but does not act as a trigger molecule for extracellular lysis of sensitized E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号