首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outflow of the cerebrospinal fluid (CSF) in animals was over the years the subject of detailed analysis. For a long time it was stated that arachnoid granulations of the venous sinuses play a key role in CSF circulation. However, recent studies on this subject have shown that a considerable part of the CSF is drained to the lymphatic vessels. Moreover, disorders in the CSF passage may result in severe central nervous system diseases such as e.g. hydrocephalus. In this paper, we summarize the current knowledge concerning the lymphatic drainage of the CSF in mammals. We present in detail comparative anatomy of different species taking into account cranial and spinal compartment. In addition, we clarified role of the lymphatic vessels in the CSF outflow and the relationship between impairment in this transport and central nervous system diseases. In the author’s opinion knowledge on CSF circulation is still poorly examined and therefore required comment.  相似文献   

2.
α-Dystroglycan is an extracellular adhesion protein that is known to interact with different ligands. The interaction is thought to stabilize the integrity of the plasma membrane. The N-terminal part of α-dystroglycan may be proteolytically processed to generate a small 38 kDa protein (α-DG-N). The physiological significance of α-DG-N is unclear but has been suggested to be involved in nerve regeneration and myelination and to function as a potential biomarker for neurodegenerative and neuromuscular diseases. In this report we show that α-DG-N is released into different body fluids, such as lachrimal fluid, cerebrospinal fluid (CSF), urine and plasma. To investigate the significance of α-DG-N in CSF we examined the levels of α-DG-N and known neurodegenerative markers in CSF from patients diagnosed with Lyme neuroborreliosis (LNB) and healthy controls. In untreated acute phase LNB patients, 67% showed a significant increase of CSF α-DG-N compared to healthy controls. After treatment with antibiotics the CSF α-DG-N levels were normalized in the LNB patients.  相似文献   

3.

Background

It has been suggested that cerebrospinal fluid (CSF) CXCL13 is a diagnostic marker of Lyme neuroborreliosis (LNB), as its levels have been shown to be significantly higher in LNB than in several other CNS infections. Levels have also been shown to decline after treatment with intravenous ceftriaxone, but levels after treatment with oral doxycycline have previously not been studied. Like Borrelia burgdorferi, HIV also has neurotropic properties. Elevated serum CXCL13 concentrations have been reported in HIV patients, but data on CSF levels are limited.

Methods

We longitudinally analysed CSF CXCL13 concentrations in 25 LNB patients before and after oral doxycycline treatment. Furthermore, we analysed CSF CXCL13 concentrations in 16 untreated LNB patients, 27 asymptomatic untreated HIV-1 infected patients and 39 controls with no signs of infectious or inflammatory disease.

Results

In the longitudinal LNB study, initially high CSF CXCL13 levels declined significantly after doxycycline treatment, which correlated to a decreased CSF mononuclear cell count. In the cross-sectional study, all the LNB patients had CSF CXCL13 levels elevated above the lowest standard point of the assay (7.8 pg/mL), with a median concentration of 500 pg/mL (range 34–11,678). Of the HIV patients, 52% had elevated CSF CXCL13 levels (median 10 pg/mL, range 0–498). There was a clear overlap in CSF CXCL13 concentrations between LNB patients and asymptomatic HIV patients. All but one of the 39 controls had CSF CXCL13 levels below 7.8 pg/mL.

Conclusions

We confirm previous reports of highly elevated CSF CXCL13 levels in LNB patients and that these levels decline after oral doxycycline treatment. The same pattern is seen for CSF mononuclear cells. CSF CXCL13 levels are elevated in neurologically asymptomatic HIV patients and the levels overlap those of LNB patients. The diagnostic value of CSF CXCL13 in LNB remains to be established.  相似文献   

4.
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with complex immunopathogenesis. Using the 2‐D DIGE technology, we separate CSF proteins from patients with active MS and control subjects. Three of the seven differential proteins identified were related with complement system, and the network analysis of the differential proteins revealed complement activation involvement in active MS. Complement C4b (gamma chain) was confirmed elevated by performing western blotting analysis (P < 0.01). The present results are an independent quantitative proteomic measure in CSF from active MS patients. The differential expression of the complement C4b and related proteins in CSF provides potential biomarkers as well as evidence for the involvement of complement activation in the pathogenesis of MS disease. J. Cell. Biochem. 112: 1930–1937, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.

Background

Syphilis, a sexually transmitted disease caused by spirochetal bacterium Treponema pallidum, can progress to affect the central nervous system, causing neurosyphilis. Accumulating evidence suggest that regulatory T cells (Tregs) may play an important role in the pathogenesis of syphilis. However, little is known about Treg response in neurosyphilis.

Methodology/Principal Findings

We analyzed Treg frequencies and Transforming Growth Factor-β (TGF-β) levels in the blood and CSF of 431 syphilis patients without neurological involvement, 100 neurosyphilis patients and 100 healthy donors. Suppressive function of Tregs in peripheral blood was also assessed. Among syphilis patients without neurological involvement, we found that secondary and serofast patients had increased Treg percentages, suppressive function and TGF-β levels in peripheral blood compared to healthy donors. Serum Rapid Plasma Reagin (RPR) titers were positively correlated with Treg numbers in these patients. Compared to these syphilis patients without neurological involvement, neurosyphilis patients had higher Treg frequency in peripheral blood. In the central nervous system, neurosyphilis patients had higher numbers of leukocytes in CSF compared to syphilis patients without neurological involvement. CD4+ T cells were the predominant cell type in the inflammatory infiltrates in CSF of neurosyphilis patients. Interestingly, among these neurosyphilis patients, a significant decrease in CSF CD4+ CD25high Treg percentage and number was observed in symptomatic neurosyphilis patients compared to those of asymptomatic neurosyphilis patients, which may be associated with low CSF TGF-β levels.

Conclusions

Our findings suggest that Tregs might play an important role in both bacterial persistence and neurologic compromise in the pathogenesis of syphilis.  相似文献   

6.
B. Thivierge  G. Delage 《CMAJ》1982,127(11):1097-1102
Between 1973 and 1981, 223 patients were seen at hôpital Sainte-Justine in Montreal for enteroviral infection of the nervous system. In 161 the cause was documented by isolation of an enterovirus from the cerebrospinal fluid (CSF). The viruses most frequently isolated were echovirus 11 (36 isolates), echovirus 30 (24), coxsackievirus B2 (23), coxsackievirus B3 (19), echovirus 6 (18), coxsackievirus B5 (16), coxsackievirus A9 (15), echovirus 9 (13), echovirus 7 (12) and coxsackievirus B1 (11). Aseptic meningitis was diagnosed in 200 cases and encephalitis in 12. The remaining 11 patients presented with the features of septicemia or with convulsions. In 33 patients an enterovirus was isolated from the CSF in the absence of pleocytosis. Polymorphonuclear cell predominance was noted in the initial CSF sample in 95 cases; it was persistent in 11. There were five mixed infections; in three cases two viruses were isolated from the same CSF sample. Two patients died: one, a child with hypogammaglobulinemia, had fatal polioencephalitis; the other, a 6-month-old infant brought to the emergency room in unexplained cardiopulmonary arrest, had echovirus 6 meningitis. Of the 172 patients admitted to hospital 96 received parenteral antibiotic therapy. The impact of enteroviral infections of the central nervous system on hospital resources could be substantially reduced if a rapid, sensitive and specific laboratory method of diagnosing these infections were available.  相似文献   

7.

Background

HIV-1 exhibits a high degree of genetic diversity and is presently divided into 3 distinct HIV-1 genetic groups designated major (M), non-M/non-O (N) and outlier (O). Group M, which currently comprises 9 subtypes (A-D, F-H, J and K), at least 34 circulating recombinant forms (CRFs) and several unique recombinant forms (URFs) is responsible for most of the HIV-1 epidemic. Most of the current knowledge of HIV-1 central nervous system (CNS) infection is based on subtype B. However, subtypes other than subtype B account for the majority of global HIV-1 infections. Therefore, we investigated whether subtypes have any influence on cerebrospinal fluid (CSF) markers of HIV-1 CNS infection.

Methodology/Principal Findings

CSF HIV-1 RNA, CSF neopterin and CSF white blood cell (WBC) count were measured in patients infected with different HIV-1 subtypes. Using multivariate regression analysis, no differences in the CSF WBC count, neopterin and viral load were found between various HIV-1 subtypes.

Conclusions

We did not find any subtype-dependent differences in the markers evaluated in this study.  相似文献   

8.
Previous investigations demonstrated that the cerebrospinal fluid (CSF) from Alzheimer's disease (AD) patients contains antibodies that recognize specific neuronal populations in the adult rat central nervous system (CNS). These findings suggest a pathogenic role for immunological aberrations in this disorder. To determine if antibodies may provide a means to differentially diagnose the dementias, CSF from a diversified dementia population was screened against the developing rat CNS and a cell culture system. Markings produced by AD CSF were distinctly different from those of vascular dementias (VAD) against the developing rat CNS. More importantly, some AD CSF recognized amoeboid microglia. The recognition of amoeboid microglia by antibodies in AD CSF is particularly interesting since these cells proliferate in response to nervous system disease and also engulf debris. A cell culture technique was developed to allow the rapid screening of CSF antibodies. Patient CSF produced five different types of markings in the cell culture: microglia, glioblasts, fibers, nonspecific, or negative. Correlations with these structures and the diagnosis of four different dementia populations revealed that, in comparison to the other groups, AD CSF displayed remarkable selectivity toward microglial cells. Cortical biopsies from patients suspected to have AD were incubated with the patient's own CSF and that of confirmed AD patients. Both CSF samples recognized microglial cells in the patient's cortical biopsy. The same CSF samples incubated against normal human cortical autopsy or a biopsy from a 3-mo-old child displayed negative immunoreactivity. These three approaches suggest that the presence of CSF microglial antibodies may be a means to distinguish AD patients from other dementias. The results add further support to the widely growing concept that inflammation and similar immune mechanisms may contribute to AD pathogenesis.  相似文献   

9.

Objective

A high level of cerebrospinal fluid (CSF) neopterin is a marker of central nervous system inflammatory-immune mediated processes. We aimed to assess data from 606 neuropediatric patients, describing the clinical and biochemical features of those neurological disorders presenting CSF neopterin values above a new cut-off value that was defined in our laboratory.

Methods

To establish the new CSF neopterin cut-off value, we studied two groups of patients: Group 1 comprised 68 patients with meningoencephalitis, and Group 2 comprised 52 children with a confirmed peripheral infection and no central nervous system involvement. We studied 606 CSF samples from neuropediatric patients who were classified into 3 groups: genetic diagnosis (A), acquired/unknown etiologic neurologic diseases (B) and inflammatory-immune mediated processes (C).

Results

The CSF neopterin cut-off value was 61 nmol/L. Out of 606 cases, 56 presented a CSF neopterin level above this value. Group C had significantly higher CSF neopterin, protein and leukocyte values than the other groups. Sixteen of twenty-three patients in this group had a CSF neopterin level above the cut-off, whereas three and seven patients presented increased leukocyte and protein values, respectively. A significant association was found among CSF neopterin, proteins and leukocytes in the 606 patients. White matter disturbances were associated with high CSF neopterin concentrations.

Conclusions

Although children with inflammatory-immune mediated processes presented higher CSF neopterin values, patients with other neurological disorders also showed increased CSF neopterin concentrations. These results stress the importance of CSF neopterin analysis for the identification of inflammatory-immune mediated processes.  相似文献   

10.
Listeria monocytogenes is a facultative intracellular pathogen that is able to invade the central nervous system causing meningoencephalitis and brain abscesses. The mechanisms allowing bacteria to cross the blood-brain barrier are poorly understood. In this work, we used an experimental model of acute listeriosis in the mouse inducing a reproducible invasion of the central nervous system. At the early phase of infection, we find that bacteria invade and rapidly grow in bone marrow cells identified as bone marrow myelomonocytic cells expressing the phenotype CD31pos:Ly-6Cpos:CD11b(pos):LY-6Glow. We demonstrate that central nervous system invasion is facilitated by injecting L. monocytogenes-infected bone marrow cells in comparison with free bacteria or infected spleen cells. In mice transplanted with bone marrow cells from transgenic donor mice expressing the green fluorescent protein (GFP), we show that infected myeloid GFP+ cells adhere to activated brain endothelial cells, accumulate in brain vessels and participate to the pathogenesis of meningoencephalitis and brain abscesses. Our results demonstrate that bone marrow, the main haematopoietic tissue, is a previously unrecognized reservoir of L. monocytogenes-infected myeloid cells, which can play a crucial role in the pathophysiology of meningoencephalitis by releasing infected cells into the circulation that ultimately invade the central nervous system.  相似文献   

11.

Background  

The metabolism of amyloid precursor protein (APP) and β-amyloid (Aβ) is widely studied in Alzheimer's disease, where Aβ deposition and plaque development are essential components of the pathogenesis. However, the physiological role of amyloid in the adult nervous system remains largely unknown. We have previously found altered cerebral amyloid metabolism in other neuroinflammatory conditions. To further elucidate this, we investigated amyloid metabolism in patients with Lyme neuroborreliosis (LNB).  相似文献   

12.
To assess the penetration of desglycinamide-arginine-vasopressin (DGAVP, Org 5667) to the central nervous system, levels of DGAVP were measured in the lumbar CSF after peripheral administration. DGAVP (2 mg) was administered intranasally to 37 patients and CSF samples were collected from these patients 5 to 240 minutes later. Detectable levels of DGAVP in CSF could be found 5 minutes after administration, but levels declined rapidly during the next 90 minutes. The DGAVP levels in CSF correlated with plasma levels of DGAVP (r=0.586, p less than 0.001). According to these results, DGAVP may gain access to the central nervous system and may induce central effects.  相似文献   

13.
Lyme neuroborreliosis (LNB) affects both the central and peripheral nervous systems. In a rhesus macaque model of LNB we had previously shown that brains of rhesus macaques inoculated with Borrelia burgdorferi release inflammatory mediators, and undergo oligodendrocyte and neuronal cell death. In vitro analysis of this phenomenon indicated that while B. burgdorferi can induce inflammation and apoptosis of oligodendrocytes per se, microglia are required for neuronal apoptosis. We hypothesized that the inflammatory milieu elicited by the bacterium in microglia or oligodendrocytes contributes to the apoptosis of neurons and glial cells, respectively, and that downstream signaling events in NFkB and/or MAPK pathways play a role in these phenotypes. To test these hypotheses in oligodendrocytes, several pathway inhibitors were used to determine their effect on inflammation and apoptosis, as induced by B. burgdorferi. In a human oligodendrocyte cell line (MO3.13), inhibition of the ERK pathway in the presence of B. burgdorferi markedly reduced inflammation, followed by the JNK, p38 and NFkB pathway inhibition. In addition to eliciting inflammation, B. burgdorferi also increased total p53 protein levels, and suppression of the ERK pathway mitigated this effect. While inhibition of p53 had a minimal effect in reducing inflammation, suppression of the ERK pathway or p53 reduced apoptosis as measured by active caspase-3 activity and the TUNEL assay. A similar result was seen in primary human oligodendrocytes wherein suppression of ERK or p53 reduced apoptosis. It is possible that inflammation and apoptosis in oligodendrocytes are divergent arms of MAPK pathways, particularly the MEK/ERK pathway.  相似文献   

14.
In this pilot study we investigated the expression of 14 microRNAs in the cerebrospinal fluid (CSF) of dogs with neoplastic, inflammatory and degenerative disorders affecting the central nervous system (CNS). CSF microRNA (miRNA) expression profiles were compared to those from dogs with neurological signs but no evidence of structural or inflammatory CNS disease. Seven miRNAs were easily detected in all samples: miR-10b-5p, miR-19b, miR-21-5p, miR-30b-5p, miR-103a-3p, miR-124, and miR-128-3p. Expression of miR-10b-5p was significantly higher in the neoplastic group compared to other groups. There was no relation between miRNA expression and either CSF nucleated cell count or CSF protein content. Higher expression of miR-10b-5p in the neoplastic group is consistent with previous reports in human medicine where aberrant expression of miR-10b is associated with various neoplastic diseases of the CNS.  相似文献   

15.
In order to characterize the cellular composition of cerebrospinal fluid (CSF) in a healthy state and in the setting of chronic pleocytosis associated with HIV-1 (HIV) infection, multi-parameter flow cytometry was used to identify and quantitate cellular phenotypes in CSF derived from HIV-uninfected healthy controls and HIV-infected subjects across a spectrum of disease and treatment. CD4+ T cells were the most frequent CSF population and the CD4:CD8 ratio was significantly increased in the CSF compared to blood (p = 0.0232), suggesting preferential trafficking of CD4+ over CD8+ T cells to this compartment. In contrast, in HIV-infection, CD8+ T cells were the major cellular component of the CSF and were markedly increased compared to HIV-uninfected subjects (p<0.001). As with peripheral blood, the CSF CD4:CD8 ratio was reversed in HIV-infected subjects compared to HIV-uninfected subjects. Monocytes, B cells and NK cells were rare in the CSF in both groups, although absolute counts of CSF NK cells and B cells were significantly increased in HIV-infected subjects (p<0.05). Our studies show that T cells are the major cellular component of the CSF in HIV-infected and uninfected subjects. The CSF pleocytosis characteristic of HIV infection involves all lymphocyte subsets we measured, except for CD4+ T cells, but is comprised primarily of CD8+ T cells. The reduced proportion of CD4+ T cells in the CSF may reflect both HIV-related peripheral loss and changes in trafficking patterns in response to HIV infection in the central nervous system.  相似文献   

16.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus into susceptible strains of mice produces chronic demyelinating disease in the central nervous system characterized by persistent viral infection. Immunogenetic data suggest that genes from both major histocompatibility complex (MHC) and non-MHC loci are important in determining susceptibility or resistance to demyelination. The role of the MHC in determining resistance or susceptibility to disease can be interpreted either as the presence of antigen-presenting molecules that confer resistance to viral infection or as the ability of MHC products to contribute to pathogenesis by acting as viral receptors or by mediating immune attack against virally infected cells. These alternatives can be distinguished by determining whether the contribution of the MHC to resistance is inherited as a recessive or dominant trait. Congenic mice with different MHC haplotypes on identical B10 backgrounds were crossed and quantitatively analyzed for demyelination, infectious virus, and local virus antigen production. F1 hybrid progeny derived from resistant B10 (H-2b), B10.D2 (H-2d), or B10.K (H-2k) and susceptible B10.R111 (H-2r), B10.M (H-2f), or B10.BR (H-2k) parental mice exhibited no or minimal demyelination, indicating that on a B10 background, resistance is inherited as a dominant trait. Although infectious virus, as measured by viral plaque assay, was cleared inefficiently from the central nervous systems of resistant F1 hybrid progeny mice, we found a direct correlation between local viral antigen production and demyelination. These data are consistent with our hypothesis that the immunological basis for resistance is determined by efficient presentation of the viral antigen to the immune system, resulting in local virus clearance and absence of subsequent demyelination.  相似文献   

17.
Human cerebrospinal fluid (CSF), produced by the choroid plexus and secreted into the brain ventricles and subarachnoid space, plays critical roles in intra-cerebral transport and the biophysical and immune protection of the brain. CSF composition provides valuable insight into soluble pathogenic bio-markers that may be diagnostic for brain disease. In these experiments we analyzed amyloid beta (Aβ) peptide and micro RNA (miRNA) abundance in CSF and in short post-mortem interval (PMI <2.1 hr) brain tissue-derived extracellular fluid (ECF) from Alzheimer’s disease (AD) and age-matched control neocortex. There was a trend for decreased abundance of Aβ42 in the CSF and ECF in AD but it did not reach statistical significance (mean age ~72 yr; N=12; p~0.06, ANOVA). The most abundant nucleic acids in AD CSF and ECF were miRNAs, and their speciation and inducibility were studied further. Fluorescent miRNA-array-based analysis indicated significant increases in miRNA-9, miRNA-125b, miRNA-146a, miRNA-155 in AD CSF and ECF (N=12; p<0.01, ANOVA). Primary human neuronal-glial (HNG) cell co-cultures stressed with AD-derived ECF also displayed an up-regulation of these miRNAs, an effect that was quenched using the anti-NF-кB agents caffeic acid phenethyl ester (CAPE) or 1-fluoro-2-[2-(4-methoxy-phenyl)-ethenyl]-benzene (CAY10512). Increases in miRNAs were confirmed independently using a highly sensitive LED-Northern dot-blot assay. Several of these NF-кB-sensitive miRNAs are known to be up-regulated in AD brain, and associate with the progressive spreading of inflammatory neurodegeneration. The results indicate that miRNA-9, miRNA-125b, miRNA-146a and miRNA-155 are CSF- and ECF-abundant, NF-кB-sensitive pro-inflammatory miRNAs, and their enrichment in circulating CSF and ECF suggest that they may be involved in the modulation or proliferation of miRNA-triggered pathogenic signaling throughout the brain and central nervous system (CNS).  相似文献   

18.
As the number of fully sequenced animal genomes and the performance of advanced mass spectrometry-based proteomics techniques are continuously improving, there is now a great opportunity to increase the knowledge of various animal proteomes. This research area is further stimulated by a growing interest from veterinary medicine and the pharmaceutical industry. Cerebrospinal fluid (CSF) is a good source for better understanding of diseases related to the central nervous system, both in humans and other animals.In this study, four high-abundant protein depletion columns, developed for human or rat serum, were evaluated for dog CSF. For the analysis, a shotgun proteomics approach, based on nanoLC-LTQ Orbitrap MS/MS, was applied. All the selected approaches were shown to deplete dog CSF with different success. It was demonstrated that the columns significantly improved the coverage of the detected dog CSF proteome. An antibody-based column showed the best performance, in terms of efficiency, repeatability and the number of proteins detected in the sample. In total 983 proteins were detected. Of those, 801 proteins were stated as uncharacterized in the UniProt database. To the best of our knowledge, this is the so far largest number of proteins reported for dog CSF in one single study.  相似文献   

19.
The evaluation of cerebrospinal fluid (CSF) requires adaption of basic cytopathologic principles to the specific neoplasms that involve the central nervous system (CNS). In this review, general criteria for detecting malignant cells in CSF are presented. The incidence and cytologic characteristics of specific metastatic tumors that involve CSF are reviewed, and the incidence, pathogenesis and natural history of meningeal carcinomatosis are discussed. The role of cytopathology in the detection and management of primary CNS tumors is presented. Emphasis is placed on the cytologic characteristics of individual types of primary brain tumors and the application of fine needle aspiration biopsy to intracranial lesions.  相似文献   

20.
Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and polyglutamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic neurodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号