首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 3,3'-diethylthiacarbocyanine (DiSC(2)(5)) dye is able to aggregate on full matched PNA-DNA duplexes by changing its absorption properties, which are manifested by an instantaneous colour shift from blue to purple. However the spontaneous aggregation of the dye also on mismatched duplexes and even on free PNA strands makes the test quite aspecific. Here it is demonstrated that the addition of succinyl-beta-cyclodextrin (Succ-beta-CyD) to the solutions containing PNA-DNA duplexes and the dye strongly enhances the specificity of the colour shift, allowing for a fast, very specific and extremely sensitive visual recognition of mismatches in DNA strands by using PNA probes in combination with the DiSC(2)(5) dye. The phenomenon has been studied by CD and NMR spectroscopies. The method has been optimized and preliminarily applied for the recognition of an apoE gene mutation in human DNA samples.  相似文献   

2.
The 3,3′-diethylthiacarbocyanine (DiSC2(5)) dye is able to aggregate on full matched PNA–DNA duplexes by changing its absorption properties, which are manifested by an instantaneous colour shift from blue to purple. However the spontaneous aggregation of the dye also on mismatched duplexes and even on free PNA strands makes the test quite aspecific. Here it is demonstrated that the addition of succinyl-β-cyclodextrin (Succ-β-CyD) to the solutions containing PNA–DNA duplexes and the dye strongly enhances the specificity of the colour shift, allowing for a fast, very specific and extremely sensitive visual recognition of mismatches in DNA strands by using PNA probes in combination with the DiSC2(5) dye. The phenomenon has been studied by CD and NMR spectroscopies. The method has been optimized and preliminarily applied for the recognition of an apoE gene mutation in human DNA samples.  相似文献   

3.
4.
F H Arnold  S Wolk  P Cruz  I Tinoco 《Biochemistry》1987,26(13):4068-4075
The structures and hydrogen exchange properties of the mismatched DNA oligonucleotide duplexes d(CCCAGGG)2 and d(CCCTGGG)2 have been studied by high-resolution nuclear magnetic resonance. Both the adenine-adenine and thymine-thymine mismatches are intercalated in the duplexes. The structures of these self-complementary duplexes are symmetric, with the two strands in equivalent positions. The evidence indicates that these mismatches are not stably hydrogen bonded. The mismatched bases in both duplexes are in the anti conformation. The mismatched thymine nucleotide in d(CCCTGGG)2 is intercalated in the duplex with very little distortion of the bases or sugar-phosphate backbone. In contrast, the bases of the adenine-adenine mismatch in d(CCCAGGG)2 must tilt and push apart to reduce the overlap of the amino groups. The thermodynamic data show that the T-T mismatch is less destabilizing than the A-A mismatch when flanked by C-G base pairs in this sequence, in contrast to their approximately equal stabilities when flanked by A-T base pairs in the sequence d(CAAAXAAAG.CTTTYTTTG) where X and Y = A, C, G, and T [Aboul-ela, F., Koh, D., & Tinoco, I., Jr. (1985) Nucleic Acids Res. 13, 4811]. Although the mechanism cannot be determined conclusively from the limited data obtained, exchange of the imino protons with solvent in these destabilized heteroduplexes appears to occur by a cooperative mechanism in which half the helix dissociates.  相似文献   

5.
2′-O-Carbamoyluridine (Ucm) was synthesized and incorporated into DNAs and 2′-O-Me-RNAs. The oligonucleotides incorporating Ucm formed less stable duplexes with their complementary and Ucm–U, Ucm–C single-base mismatched DNAs and RNAs in comparison with those without the carbamoyl group. On the contrary, the Tm analyses revealed that the duplexes with a mismatched Ucm–G base pair showed almost the same thermostability as the corresponding unmodified duplexes. Molecular dynamics (MD) simulations of the Ucm-modified 2′-O-Me-RNA/RNA duplexes with Ucm–G mismatched base pair suggested that the carbamoyl group could participate in the Ucm–G base pair by an additional intermolecular hydrogen bond between the carbamoyl oxygen and the H2 of the guanine base.  相似文献   

6.
Abstract

A new program, CONAN has been designed for CONformational ANalysis of oligonucleotide duplexes with natural and modified bases. It allows to model both regular DNA fragments with different types of symmetry and irregular ones including bends, junctions, mismatched pairs and base lesions. Computations and minimization of the energy are performed in a space of internal structural variables chosen to build start structure easier and conveniently analyze the results obtained. These internal structural variables determine mutual base-base and base-sugar arrangement and sugar puckering. The analytical closure procedure is applied both to sugar rings and to backbone fragments between adjacent sugars. For more effective energy minimization, analytical gradient is calculated. The CONAN was applied to the search for low-energy conformations of poly(dA-dT)·poly(dA-dT) and poly(dG-dC)·poly(dG-dC) duplexes. Extended regions of low-energy A and B conformations are revealed and characterized. These regions contain structures with different relative values of helical twist, τ, for pur-pyr and pyr-pur steps, namely, conformations with τ(pur-pyr)>τ(pyr-pur) and with τ(pur-pyr)<τ(pyr-pur). Two types of sugar puckering were found for B-form low-energy conformations, the first type with all C2′-endo sugar residues and the second one—;with C2′-endo purines and O1′-endo pyrimidines. The calculated conformations are compared with X-ray diffraction data for crystals and fibers and NMR data for solution.  相似文献   

7.
4', 6-Diamidine-2-phenylindole forms fluorescent complexes with synthetic DNA duplexes containing AT, AU and IC base pairs; no fluorescent complexes were observed with duplexes containing GC base pairs or with duplexes containing a single AT base pair sandwiched between GC pairs. The binding site size is one molecule of dye per 3 base pairs. The intrinsic binding constants are higher for alternating sequence duplexes than for the corresponding homopolymer pairs. With the exception of the four-stranded helical poly rI which exhibits considerable fluorescence enhancement upon binding of the ligand, none of the single- or multi- stranded polyribonucleotides and ribo-deoxyribonucleotide hybrid structures form fluorescent complexes with the dye. Poly rI is the only RNA which forms a DNA B-like structure (Arnott et al. (1974) Biochem. J. 141, 537). The B conformation of the helix and the absence of guanine appear to be the major determinants of the specificity of the fluorescent binding mode of the dye. Nonfluorescent interactions of the dye with polynucleotides are nonspecific; UV absorption and circular dichroic spectra demonstrate binding to synthetic single- and double-stranded DNA and RNA analogs, including those containing GC base pairs.  相似文献   

8.
Y Kawase  S Iwai  H Inoue  K Miura    E Ohtsuka 《Nucleic acids research》1986,14(19):7727-7736
The thermal stability of DNA duplexes containing deoxyinosine in a pairing position in turn with each of the four major deoxynucleotides has been investigated by measuring ultraviolet-absorbance at different temperatures. d(G2A4 X A4G2) and d(C2T4YT4C2) were prepared by the solid-phase phosphotriester method. When X is deoxyinosine, the Tm values of the duplexes are in the order Y = dC greater than dA greater than dG greater than dT greater than dU. The Tm of other duplexes containing dG, dA and dT at X were also measured. Self-complementary duplexes d(GGGAAINTTCCC) showed the same order of stability with N being dC, dA, dG and dT. Thermal stabilities of duplexes containing dG instead of dI were compared with other matched and mismatched duplexes. The Tm values of sequence isomers containing purine-pyrimidine combinations were compared. Self-complementary duplexes containing G-C and A-T in the central positions showed Tm values ca. 10 degrees higher than those containing C-G and T-A in the same positions. Thermodynamic parameters and circular dichroism spectra of these oligonucleotides were compared.  相似文献   

9.
Oligodeoxyribonucleotides complementary to the DNA of the wild type (wt) bacteriophage phi chi 174 have been synthesized by the phosphotriester method. The oligomers, 11, 14, and 17 bases long, are complementary to the region of the DNA which accounts for the am-3 point mutation. When hybridized to am-3 DNA, the oligonucleotides form duplexes with a single base pair mismatch. The thermal stability of the duplexes formed between wt and am-3 DNAs has been measured. The am-3 DNA:oligomer duplexes dissociate at a temperature about 10 degrees C lower than the corresponding wt DNA:oligomer duplexes. This dramatic decrease in thermal stability due to a single mismatch makes it possible to eliminate the formation of the mismatched duplexes by the appropriate choice of hybridization temperature. These results are discussed with respect to the use of oligonucleotides as probes for the isolation of specific cloned DNA sequences.  相似文献   

10.
The DNA fragment d(GGGTACCC) was crystallized as an A-DNA duplex in the hexagonal space group P6(1). The structure was analyzed at room temperature and low temperature (100K) at a resolution of 2.5 A. The helical conformations at the two temperatures are similar but the low-temperature structure is more economically hydrated than the room-temperature one. The structure of d(GGGTACCC) is compared to those of d(GGGTGCCC) and d(GGGCGCCC). This series of molecules, which consists of a mismatched duplex and its two Watson-Crick analogues, exhibits three conformational variants of the A-form of DNA, which are correlated with the specific intermolecular interactions observed in the various crystals. The largest differences in local conformation are displayed by the stacking geometries of the central pyrimidine-purine and the flanking purine-pyrimidine sites in each of the three duplexes. Stacking energy calculations performed on the crystal structures show that the mismatched duplex is destabilized with respect to each of the error-free duplexes, in accordance with helix-coil transition measurements.  相似文献   

11.
12.
The efficiency of discrimination between perfect and mismatched duplexes during hybridization on microchips depends on the concentrations of target DNA in solution and immobilized probes, buffer composition, and temperature of hybridization and is determined by both thermodynamic relationships and hybridization kinetics. In this work, optimal conditions of discrimination were studied using hybridization of fluorescently labeled target DNA with custom-made gel-based oligonucleotide microchips. The higher the concentration of immobilized probes and the higher the association constant, the higher the concentration of the formed duplexes and the stronger the corresponding fluorescence signal, but, simultaneously, the longer the time needed to reach equilibrium. Since mismatched duplexes hybridize faster than their perfect counterparts, perfect-to-mismatch signal ratio is lower in transient regime, and short hybridization times may hamper the detection of mutations. The saturation time can be shortened by decreasing the probe concentration or augmenting the gel porosity. This improves the detection of mutations in transient regime. It is shown that the decrease in the initial concentration of oligonucleotide probes by an order of magnitude causes only 1.5-2.5-fold decrease of fluorescence signals after hybridization of perfect duplexes for 3-12 h. At the same time, these conditions improve the discrimination between perfect and mismatched duplexes more than two-fold. A similar improvement may be obtained using an optimized dissociation procedure.  相似文献   

13.
Site-directed modification of DNA duplexes by chemical ligation.   总被引:8,自引:8,他引:0       下载免费PDF全文
The efficiency of chemical ligation method have been demonstrated by assembling a number of DNA duplexes with modified sugar phosphate backbone. Condensation on a tetradecanucleotide template of hexa(penta)- and undecanucleotides differing only in the terminal nucleoside residue have been performed using water-soluble carbodiimide as a condensing agent. As was shown by comparing the efficiency of chemical ligation of single-strand breaks in those duplexes, the reaction rate rises 70 or 45 times if the 3'-OH group is substituted with an amino or phosphate group (the yield of products with a phosphoramidate or pyrophosphate bond is 96-100% in 6 d). Changes in the conformation of reacting groups caused by mismatched base pairs (A.A, A.C) as well as the hybrid rU.dA pair or an unpaired base make the template-directed condensation less effective. The thermal stability of DNA duplexes was assayed before and after the chemical ligation. Among all of the modified duplexes, only the duplex containing 3'-rU in the nick was found to be a substrate of T4 DNA ligase.  相似文献   

14.
The effect of G.T mispair incorporation into a double-helical environment was examined by molecular dynamics simulation. The 60-ps simulations performed on the two hexanucleotide duplexes d (G3C3)2 and d(G3TC2)2 included 10 Na+ counterions and first hydration shell waters. The resulting backbone torsional angle trajectories were analyzed to select time spans representative of conformational domains. The average backbone angles and helical parameters of the last time span for both duplexes are reported. During the simulation the hexamers retained B-type DNA structures that differed from typical A- or B-DNA forms. The overall helical structures for the two duplexes are vary similar. The presence of G.T mispairs did not alter the overall helical structure of the oligonucleotide duplex. Large propeller twist and buckle angles were obtained for both duplexes. The purine/pyrimidine crossover step showed a large decrease in propeller twist in the normal duplex but not in the mismatch duplex. Upon the formation of wobble mispairs in the mismatched duplex, the guanines moved into the minor groove and the thymines moved into the major groove. This helped prevent purine/purine clash and created a deformation in the relative orientation of the glycosidic bonds. It also exposed the free O4 of the thymines in the major groove and N2 of the guanines in the minor groove to interactions with solvent and counterions. These factors seemed to contribute to the apparently higher rigidity of the mismatched duplex during the simulation.  相似文献   

15.
DNA sequencing by hybridization was carried out with a microarray of all 4(6) = 4,096 hexadeoxyribonucleotides (the generic microchip). The oligonucleotides immobilized in 100 x 100 x 20-microm polyacrylamide gel pads of the generic microchip were hybridized with fluorescently labeled ssDNA, providing perfect and mismatched duplexes. Melting curves were measured in parallel for all microchip duplexes with a fluorescence microscope equipped with CCD camera. This allowed us to discriminate the perfect duplexes formed by the oligonucleotides, which are complementary to the target DNA. The DNA sequence was reconstructed by overlapping the complementary oligonucleotide probes. We developed a data processing scheme to heighten the discrimination of perfect duplexes from mismatched ones. The procedure was united with a reconstruction of the DNA sequence. The scheme includes the proper definition of a discriminant signal, preprocessing, and the variational principle for the sequence indicator function. The effectiveness of the procedure was confirmed by sequencing, proofreading, and nucleotide polymorphism (mutation) analysis of 13 DNA fragments from 31 to 70 nucleotides long.  相似文献   

16.
8-Chloroadenosine (8-Cl-Ado) has shown potential as a chemotherapeutic agent for the treatment of multiple myeloma and certain leukemias. 8-Cl-Ado treatment leads to a decrease in global RNA levels and incorporation of the analog into cellular RNA in malignant cells. To investigate the effects of 8-Cl-Ado modifications on RNA structure and function, an 8-Cl-Ado phosphoramidite and controlled-pore glass support were synthesized and used to introduce 8-Cl-Ado at internal and 3'- terminal positions, respectively. RNA oligonucleotides containing 8-chloroadenine (8-Cl-A) residues were synthesized and hybridized with complementary RNA strands. Circular dichroism spectroscopy of the resulting RNA duplexes revealed that the modified nucleobase does not perturb the overall A-form helix geometry. The thermal stabilities of 8-Cl-Ado modified duplexes were determined by UV thermal denaturation analysis and were compared with analogous natural duplexes containing standard and mismatched base pairs. The 8-Cl-Ado modification destabilizes RNA duplexes by approximately 5 kcal/mole, approximately as much as a U:U mismatched base pair. The duplex destabilization of 8-Cl-A may result from perturbation of Watson-Crick base pairing induced by conformational preferences of 8-halogenated nucleosides.  相似文献   

17.
Tridecamers containing a central no-base residue (X) have been synthesized and hybridized to their complementary strands, so as to constitute duplexes consisting of two hexamers separated by central mismatched X-A or X-T pairs. The effect of the introduction of this deoxyribose derivative on duplex stability was investigated by measuring UV absorbance as a function of salt concentration and temperature. As expected, the duplexes containing the abnormal base pairs (X-T and X-A) are less stable when compared to the totally complementary duplexes (A-T and T-A). The X-T mismatched duplex shows the most unstable thermodynamical behaviour. The conformational changes of these duplexes were studied by IR spectroscopy in condensed phase as a function of water content. At high relative humidity, the IR spectra show that these tridecamers form B-type double stranded duplex structures. If the water content is decreased, only the duplexes m5CGm5CGCTXAGCTTC GCGCGAATCGAAG and, to a lesser degree, m5CGm5CGCTXAGCTTC GCGGCATTCGAAG undergo a partial B---Z transition involving the methylated hexamer, the conformation of the second segment remaining of the B type. These results show that only one apurinic residue leads to a flexible junction between B and Z forms in a short duplex containing 5-methyl-2'-deoxycytidines.  相似文献   

18.
Homo-purine (d-TGAGGAAAGAAGGT) and homo-pyrimidine (d-CTCCTTTCTTCC) oligomers have been designed such that they are complementary in parallel orientation. When mixed in a 1:1 molar ratio, the system adopts an antiparallel duplex at neutral pH with three mismatched base pairs. On lowering the pH below 5.5, a new complex is formed. The NMR results show the coexistence of a intermolecular pyrimidine.purine:pyrimidine DNA triplex and a single stranded oligopurine at this pH. The triplex is stabilized by five T.A:T, four C+.G:C and two mismatched triads, namely, C+.G-T and T.A-C. This triplex is further stabilized by a Hoogsteen C+.G base-pair on one end. Temperature dependence of the imino proton resonances reveals that the triplex dissociates directly into single strands around 55 degrees C, without duplex intermediates. Parallel duplexes are not formed under any of the conditions employed in this study.  相似文献   

19.
ABSTRACT

8-Chloroadenosine (8-Cl-Ado) has shown potential as a chemotherapeutic agent for the treatment of multiple myeloma and certain leukemias. 8-Cl-Ado treatment leads to a decrease in global RNA levels and incorporation of the analog into cellular RNA in malignant cells. To investigate the effects of 8-Cl-Ado modifications on RNA structure and function, an 8-Cl-Ado phosphoramidite and controlled-pore glass support were synthesized and used to introduce 8-Cl-Ado at internal and 3′- terminal positions, respectively. RNA oligonucleotides containing 8-chloroadenine (8-Cl-A) residues were synthesized and hybridized with complementary RNA strands. Circular dichroism spectroscopy of the resulting RNA duplexes revealed that the modified nucleobase does not perturb the overall A-form helix geometry. The thermal stabilities of 8-Cl-Ado modified duplexes were determined by UV thermal denaturation analysis and were compared with analogous natural duplexes containing standard and mismatched base pairs. The 8-Cl-Ado modification destabilizes RNA duplexes by ~5 kcal/mole, approximately as much as a U:U mismatched base pair. The duplex destabilization of 8-Cl-A may result from perturbation of Watson-Crick base pairing induced by conformational preferences of 8-halogenated nucleosides.  相似文献   

20.
Using high precision densimetric and ultrasonic measurements, we have determined, at 25°C, the apparent molar volumes ΦV and the apparent molar compressibilities ΦKS of four nucleic acid duplexes—namely, the DNA duplex, poly(dIdC)poly(dIdC); the RNA duplex, poly(rA)poly(rU); and the two DNA/RNA hybrid duplexes, poly(rA)poly(dT) and poly(dA)poly(rU). Using available fiber diffraction data on these duplexes, we have calculated the molecular volumes as well as the solvent‐accessible surface areas of the constituent charged, polar, and nonpolar atomic groups. We found that the hydration properties of these nucleic acid duplexes do not correlate with the extent and the chemical nature of the solvent‐exposed surfaces, thereby suggesting a more specific set of duplex–water interactions beyond general solvation effects. A comparative analysis of our volumetric data on the four duplexes, in conjunction with available structural information, suggests the following features of duplex hydration: (a) The four duplexes exhibit different degrees of hydration, in the order poly(dIdC)poly(dIdC) > poly(dGdC)poly(dGdC) > poly(dAdT)poly(dAdT) ≈ poly(dA)poly(dT). (b) Repetitive AT and IC sequences within a duplex are solvated beyond general effects by a spine of hydration in the minor groove, with this sequence‐specific water network involving about 8 additional water molecules from the second and, perhaps, even the third hydration layers. (c) Repetitive GC and IC sequences within a duplex are solvated beyond general effects by a “patch of hydration” in the major groove, with this water network involving about 13 additional water molecules from the second and, perhaps, even the third hydration layers. (d) Random sequence, polymeric DNA duplexes, which statistically lack extended regions of repetitive AT, GC, or IC sequences, do not experience such specific enhancements of hydration. Consequently, consistent with our previous observations (T. V. Chalikian, A. P. Sarvazyan, G. E. Plum, and K. J. Breslauer, Biochemistry, 1994, Vol. 33, pp. 2394–2401), duplexes with approximately 50% AT content exhibit the weakest hydration, while an increase or decrease from this AT content causes enhancement of hydration, either due to stronger hydration of the minor groove (an increase in AT content) or due to stronger hydration of the major groove (an increase in GC content). (e) In dilute aqueous solutions, a B‐DNA duplex is more hydrated than an A‐DNA duplex, a volumetric‐based conclusion that is in agreement with previous results obtained on crystals, fibers, and DNA solutions in organic solvent–water mixtures. (f) the A‐like, RNA duplex poly(rA)poly(rU) and the structurally similar A‐like, hybrid duplex poly(rA)poly(dT), exhibit similar hydration properties, while the structurally distinct A‐like, hybrid duplex poly(rA)poly(dT) and non‐A‐like, hybrid duplex poly(dA)poly(rU) exhibit differential hydration properties, consistent with structural features dictating hydration characteristics. We discuss how volumetric characterizations, in conjunction with structural studies, can be used to describe, define, and resolve the general and sequence/conformation‐specific hydration properties of nucleic acid duplexes. © 1999 John Wiley & Sons, Inc. Biopoly 50: 459–471, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号