首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A mutant of Arabidopsis thaliana (L.) Heyn. (a small plant in the crucifer family) that lacks glycine decarboxylase activity owing to a recessive nuclear mutation has been isolated on the basis of a growth requirement for high concentrations of atmospheric CO2. Mitochondria isolated from leaves of the mutant did not exhibit glycine-dependent O2 consumption, did not release 14CO2 from [14C]glycine, and did not catalyse the glycine-bicarbonate exchange reaction that is considered to be the first partial reaction associated with glycine cleavage. Photosynthesis in the mutant was decreased after illumination under atmospheric conditions that promote partitioning of carbon into intermediates of the photorespiratory pathway, but was not impaired under non-photorespiratory conditions. Thus glycine decarboxylase activity is not required for any essential function unrelated to photorespiration. The photosynthetic response of the mutant in photorespiratory conditions is probably caused by an increased rate of glyoxylate oxidation, which results from the sequestering of all readily transferable amino groups in a metabolically inactive glycine pool, and by a depletion of intermediates from the photosynthesis cycle. The rate of release of 14CO2 from exogenously applied [14C]glycollate was 14-fold lower in the mutant than in the wild type, suggesting that glycine decarboxylation is the only significant source of photorespiratory CO2.  相似文献   

3.
Derivatives of Escherichia coli strain W3110 with increased tryptophan synthase (TS) activity were constructed. The biosynthesis of serine was shown to limit tryptophan production in minimal medium with indole as precursor. In the presence of serine and indole we obtained a correlation between the specific activity of TS and the specific productivity (qp) of tryptophan. Supplementation of the growth medium with glycine enhanced qp two-fold. In a strain with high serine hydroxymethyltransferase (SHMT) activity no such increase of tryptophan productivity was observed, although crude extracts from these cells were shown to produce tryptophan with indole, one-carbon units and glycine as precursors. Growth of the strain with high SHMT activity was inhibited in a medium with high glycine concentration. This inhibition could not be released by addition of isoleucine and valine. In a buffer system with permeabilized cells high in specific TS and SHMT activities we did not obtain any tryptophan production in presence of indole, glycine, one-carbon units and cofactors. On the other hand, in a buffer system with indole and serine as precursors we obtained high qp of tryptophan [13.3 g tryptophan (g dry wt cells)-1 h-1], which was correlated to the TS specific activity.  相似文献   

4.
Hasse D  Mikkat S  Thrun HA  Hagemann M  Bauwe H 《FEBS letters》2007,581(7):1297-1301
The multi-enzyme complex glycine decarboxylase is important for one-carbon metabolism, essential for the photorespiratory glycolate cycle of plants, and comprises four different polypeptides, P-, H-, T-, and L-protein. We report on the production and properties of recombinant P-protein from the cyanobacterium Synechocystis and also describe features of recombinant H-protein from the same organism. The P-protein shows enzymatic activity with lipoylated H-protein and very low activity with H-apoprotein or lipoate as artificial cofactors. Its affinity towards glycine is unaffected by the presence and nature of the methyleneamine acceptor molecule. The cyanobacterial H-protein apparently forms stable dimers.  相似文献   

5.
6.
Oxalate decarboxylase is a manganese-dependent enzyme that catalyzes the conversion of oxalate to formate and carbon dioxide. We have determined the structure of oxalate decarboxylase from Bacillus subtilis at 1.75 A resolution in the presence of formate. The structure reveals a hexamer with 32-point symmetry in which each monomer belongs to the cupin family of proteins. Oxalate decarboxylase is further classified as a bicupin because it contains two cupin folds, possibly resulting from gene duplication. Each oxalate decarboxylase cupin domain contains one manganese binding site. Each of the oxalate decarboxylase domains is structurally similar to oxalate oxidase, which catalyzes the manganese-dependent oxidative decarboxylation of oxalate to carbon dioxide and hydrogen peroxide. Amino acid side chains in the two metal binding sites of oxalate decarboxylase and the metal binding site of oxalate oxidase are very similar. Four manganese binding residues (three histidines and one glutamate) are conserved as well as a number of hydrophobic residues. The most notable difference is the presence of Glu333 in the metal binding site of the second cupin domain of oxalate decarboxylase. We postulate that this domain is responsible for the decarboxylase activity and that Glu333 serves as a proton donor in the production of formate. Mutation of Glu333 to alanine reduces the catalytic activity by a factor of 25. The function of the other domain in oxalate decarboxylase is not yet known.  相似文献   

7.
1. Glycine decarboxylase and glycine–bicarbonate exchange activities were detected in extracts of Rhodopseudomonas spheroides and in rat liver mitochondria and their properties were studied. 2. The glycine decarboxylase activity from both sources is stimulated when glyoxylate is added to the assay system. 3. Several proteins participate in these reactions and a heat-stable low-molecular-weight protein was purified from both sources. 4. These enzyme activities increase markedly when R. spheroides is grown in the presence of glycine, glyoxylate, glycollate, oxalate or serine. 5. All the enzymes required to catalyse the conversion of glycine into acetyl-CoA via serine and pyruvate were detected in extracts of R. spheroides; of these glycine decarboxylase has the lowest activity. 6. The increase in the activity of glycine decarboxylase on illumination of R. spheroides in a medium containing glycine, and the greater increase when ATP is also present in the medium, probably accounts for the increased incorporation of the methylene carbon atom of glycine into fatty acids found previously under these conditions (Gajdos, Gajdos-Török, Gorchein, Neuberger & Tait, 1968). 7. The results are compared with those obtained by other workers on the glycine decarboxylase and glycine–bicarbonate exchange activities in other systems.  相似文献   

8.
D. A. Sinclair  I. W. Dawes 《Genetics》1995,140(4):1213-1222
Saccharomyces cerevisiae can grow on glycine as sole nitrogen source and can convert glycine to serine via the reaction catalyzed by the glycine decarboxylase multienzyme complex (GDC). Yeast strains with mutations in the single gene for lipoamide dehydrogenase (lpd1) lack GDC activity, as well as the other three 2-oxoacid dehydrogenases dependent on this enzyme. The LPD1 gene product is also required for cells to utilize glycine as sole nitrogen source. The effect of mutations in LPD1 (L-subunit of GDC), SER1 (synthesis of serine from 3-phosphoglycerate), ADE3 (cytoplasmic synthesis of one-carbon units for the serine synthesis from glycine), and all combinations of each has been determined. The results were used to devise methods for isolating mutants affected either in the generation of one-carbon units from glycine (via GDC) or subsequent steps in serine biosynthesis. The mutants fell into six complementation groups (gsd1-6 for defects in conversion of glycine to serine). Representatives from three complementation groups were also unable to grow on glycine as sole nitrogen source (gsd1-3). Assays of the rate of glycine uptake and decarboxylation have provided insights into the nature of the mutations.  相似文献   

9.
The Bacillus subtilis oxalate decarboxylase (EC ), YvrK, converts oxalate to formate and CO(2). YvrK and the related hypothetical proteins YoaN and YxaG from B. subtilis have been successfully overexpressed in Escherichia coli. Recombinant YvrK and YoaN were found to be soluble enzymes with oxalate decarboxylase activity only when expressed in the presence of manganese salts. No enzyme activity has yet been detected for YxaG, which was expressed as a soluble protein without the requirement for manganese salts. YvrK and YoaN were found to catalyze minor side reactions: oxalate oxidation to produce H(2)O(2); and oxalate-dependent, H(2)O(2)-independent dye oxidations. The oxalate decarboxylase activity of purified YvrK was O(2)-dependent. YvrK was found to contain between 0.86 and 1.14 atoms of manganese/subunit. EPR spectroscopy showed that the metal ion was predominantly but not exclusively in the Mn(II) oxidation state. The hyperfine coupling constant (A = 9.5 millitesla) of the main g = 2 signal was consistent with oxygen and nitrogen ligands with hexacoordinate geometry. The structure of YvrK was modeled on the basis of homology with oxalate oxidase, canavalin, and phaseolin, and its hexameric oligomerization was predicted by analogy with proglycinin and homogentisate 1,2-dioxygenase. Although YvrK possesses two potential active sites, only one could be fully occupied by manganese. The possibility that the C-terminal domain active site has no manganese bound and is buried in an intersubunit interface within the hexameric enzyme is discussed. A mechanism for oxalate decarboxylation is proposed, in which both Mn(II) and O(2) are cofactors that act together as a two-electron sink during catalysis.  相似文献   

10.
Mouse fibroblasts in which the mthfd2 gene encoding mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) was previously inactivated were infected with retroviral expression constructs of dehydrogenase/cyclohydrolase cDNA. Cellular fractionation confirmed that the expressed proteins were properly targeted to the mitochondria. Expression of the NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase enzyme in mitochondria corrected the glycine auxotrophy of the null mutant cells. A construct in which the cyclohydrolase activity of NMDMC was inactivated by point mutation also rescued the glycine auxotrophy, although poorly. This suggests that the cyclohydrolase activity is also required to ensure optimal production of 10-formyltetrahydrofolate. The expression of the NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase in the mitochondria also reversed the glycine requirement of the null cells demonstrating that the use of the NAD cofactor is not absolutely essential to maintain the flux of one-carbon metabolites. All rescued cells demonstrated a decrease in the ratio of incorporation of exogenous formate to serine in standardized radiolabeling studies. This ratio, which is approximately 2.5 for nmdmc(-/-) cells and 0.3 for the wild type cells under the conditions used, is a qualitative indicator of the ability of the mitochondria of the cells to generate formate.  相似文献   

11.
The Escherichia coli glycine cleavage enzyme system catalyzes the cleavage of glycine, generating CO2, NH3, and a one-carbon unit. Expression of the operon encoding this enzyme system (gcv) is induced in the presence of glycine and repressed in the presence of purines. In this study, a mutant with high-level constitutive expression of a gcvT-lacZ gene fusion was isolated. The mutation in this strain was designated gcvR1 and was mapped to min 53.3 on the E. coli chromosome. A single-copy plasmid carrying the wild-type gcvR gene complemented the mutation, restoring normal regulation of a gcvT-lacZ fusion, while a multicopy plasmid carrying gcvR led to superrepression under all growth conditions. Negative regulation of a gcvT-lacZ fusion by GcvR was shown to require GcvA, a LysR family protein known to both activate gcv in the presence of glycine and repress gcv in the presence of purines. Models explaining how GcvR and GcvA might interact to regulate gcv expression are proposed.  相似文献   

12.
Any one of five amino acis (alanine, asparagine, glutamine, glycine, and serine) is an essential requirement for the induction of ornithine decarboxylase (EC 4.1.1.17) in cultured chinese hamster ovary (CHO) cells maintained with a salts/glucose, medium. Each of these amino acids induced a striking activation of ornithine decarboxylase in the presence of dibutyryl cyclic AMP and luteinizing hormone. The effect of the other amino acids was considerably less or negligible. The active amino acids at optimal concentrations (10 mM) induced only a 10-20 fold enhancement of enzyme activity alone, while in the presence of dibutyryl cyclic AMP, ornithine decarboxylase activity was increased 40-50 fold within 7-8 h. Of the hormones and drugs tested, luteinizing hormone resulted in the highest (300-500 fold) induction of ornithine decarboxylase with optimal concentrations of dibutyryl cyclic AMP and asparagnine. Omission of dibutyryl cyclic AMP reduced this maximal activation to one half while optimal levels of luteinizing hormone alone caused no enhancement of ornithine decarboxylase activity. The induction of ornithine decarboxylase elicited by dibutyryl cyclic AMP, amino acid and luteinizing hormone was diminished about 50% with inhibitors of RNA and protein synthesis. The specific amino acid requirements for ornithine decarboxylase induction in chinese hamster ovary cells was similar to the requirements for induction in two other transformed cell lines. Understanding the mechanism of enzyme induction requires an identification of the essential components of the regulatory system. The essential requirement for enzyme induction is one of five amino acids. The induction of ornithine decarboxylase by dibutyryl cyclic AMP and luteinizing hormone was additive in the presence of an active amino acid.  相似文献   

13.
Glycine decarboxylase, or P-protein, is a pyridoxal 5′-phosphate (PLP)-dependent enzyme in one-carbon metabolism of all organisms, in the glycine and serine catabolism of vertebrates, and in the photorespiratory pathway of oxygenic phototrophs. P-protein from the cyanobacterium Synechocystis sp. PCC 6803 is an α2 homodimer with high homology to eukaryotic P-proteins. The crystal structure of the apoenzyme shows the C terminus locked in a closed conformation by a disulfide bond between Cys972 in the C terminus and Cys353 located in the active site. The presence of the disulfide bridge isolates the active site from solvent and hinders the binding of PLP and glycine in the active site. Variants produced by substitution of Cys972 and Cys353 by Ser using site-directed mutagenesis have distinctly lower specific activities, supporting the crucial role of these highly conserved redox-sensitive amino acid residues for P-protein activity. Reduction of the 353–972 disulfide releases the C terminus and allows access to the active site. PLP and the substrate glycine bind in the active site of this reduced enzyme and appear to cause further conformational changes involving a flexible surface loop. The observation of the disulfide bond that acts to stabilize the closed form suggests a molecular mechanism for the redox-dependent activation of glycine decarboxylase observed earlier.  相似文献   

14.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.  相似文献   

15.
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible cleavage of serine to glycine with the transfer of the one-carbon group to tetrahydrofolate to form 5,10-methylenetetrahydrofolate. No SHMT has been purified from a nonmethanogenic Archaea strain, in part because this group of organisms uses modified folates as the one-carbon acceptor. These modified folates are not readily available for use in assays for SHMT activity. This report describes the purification and characterization of SHMT from the thermophilic organism Sulfolobus solfataricus. The exchange of the alpha-proton of glycine with solvent protons in the absence of the modified folate was used as the activity assay. The purified protein catalyzes the synthesis of serine from glycine and a synthetic derivative of a fragment of the natural modified folate found in S. solfataricus. Replacement of the modified folate with tetrahydrofolate did not support serine synthesis. In addition, this SHMT also catalyzed the cleavage of both allo-threonine and beta-phenylserine in the absence of the modified folate. The cleavage of these two amino acids in the absence of tetrahydrofolate is a property of other characterized SHMTs. The enzyme contains covalently bound pyridoxal phosphate. Sequences of three peptides showed significant similarity with those of peptides of SHMTs from two methanogens.  相似文献   

16.
Glycolic acid dehydrogenase has been purified over 800-fold from human liver by (NH4)2SO4 fractionation and column chromatography with DEAE-cellulose and hydroxyapatite. The enzyme catalyzes the direct oxidation of glycolate to oxalate without forming glyoxylate as a free intermediate. Activity is found only in the liver in the soluble fraction. The enzyme is specific for glycolate and inhibits no activity towards glycine or glyoxylate. Glyoxylate and DL-phenyllactate exhibit the enzyme. Optimum activity occurs sharply at pH 6.1 and the Michaelis constant for glycolate was 6.3.10(-5)M. Molecular oxygen does not appear to be the electron acceptor and no requirement for cofactors has been demonstrated, althoug flavin mononucleotide, ascorbate and cytochrome c stimulate activity. The isolation of this enzyme which may account for a significant part of the normal oxalate excretion in man, provides a more complete understanding of the pathways of oxalate biosynthesis and must be taken into account when considering possible methods for controlling disorders of oxalate metabolism.  相似文献   

17.
Escherichia coli K12 mutants defective in the glycine cleavage enzyme system   总被引:12,自引:0,他引:12  
Two routes of one-carbon biosynthesis have been described in Escherichia coli K12. One is from serine via the serine hydroxymethyltransferase (SHMT) reaction, and the other is from glycine via the glycine cleavage (GCV) enzyme system. To isolate mutants deficient in the GCV pathway, we used a selection procedure that is based on the assumption that loss of this enzyme system in strains blocked in serine biosynthesis results in their inability to use glycine as a serine source. Mutants were accordingly isolated that grow with a serine supplement, but not with a glycine supplement. Enzyme assays demonstrated that three independently isolated mutants have no detectable GCV enzyme activity. The absence of a functional GCV pathway results in the excretion of glycine, but has no affect on the cell's primary source of one-carbon units, the SHMT reaction. The new mutations, designated gcv, were mapped between the serA and lysA genes on the E. coli chromosome.  相似文献   

18.
19.
Glycine decarboxylase, a constituent of the glycine cleavage system, in patients with either nonketotic or ketotic hyperglycinemia (NKH and KH) was examined using an anti-chicken glycine decarboxylase antibody. Patients with NKH who have lesion in glycine decarboxylase are differentiated by its expressed level in the liver. One group is cases of the neonatal onset type who have neither activity of the enzyme nor protein reactive to the antibody. The other is a case of the late onset type who shows low but detectable activity of the enzyme and the desirable amount of the immunoreactive material. In the liver of a patient with KH not showing the appreciable activity of H-protein, ubiquitous amount of protein reactive to anti-H-protein IgG is detected and amount of glycine decarboxylase has also been lowered. It is suggested that several mechanisms may be involved in determining the expressed level of glycine decarboxylase in patients with hyperglycinemias.  相似文献   

20.
Pandoraea sp. OXJ-11 has been shown to produce an oxalate decarboxylase. The enzyme could be induced by increasing the oxalate in the medium. An increasing concentration of yeast extract was able to stimulate the cell growth but could not increase the specific oxalate decarboxylase activity. The oxalate decarboxylase was produced maximally at 25-35 degrees C and pH 4.0-9.0, favoring its potential application in protection of host plants from oxalate-producing phytopathogens. The influence of glucose on the induction of oxalate decarboxylase by oxalate was examined, and it was found that glucose inhibited the production of the oxalate decarboxylase. Resistance results showed that Pandoraea sp. OXJ-11 was capable of suppressing Sclerotinia sclerotiorum infection on detached leaflets of Brassica napus plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号