首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effector memory T cells (T(EM)) have an important role in immunity against infection. However, little is known about the factors regulating T(EM) maintenance and proliferation. In this study, we investigated the role of direct interactions between CD4(+) and CD8(+) T cells (TC) for human T(EM) expansion. Proliferation of separated or mixed CD4(+) and CD8(+)T(EM) populations was analyzed after polyclonal stimulation in vitro. Compared to each isolated subset mixed T(EM) populations showed increased proliferation and expansion of both CD4(+) and CD8(+)T(EM) subpopulations. Combined activation of CD4(+) and CD8(+) memory T cells (Tmem) induced an increased expression of CD40L and CD40 on both populations. Subsequently, CD40/CD40L caused a bi-directional stimulation of CD40(+)CD4(+)T(EM) by CD40L(+)CD8(+)T(EM) and of CD40(+)CD8(+)T(EM) by CD40L(+)CD4(+)T(EM). Blocking of CD40L on activated CD8(+)T(EM) selectively inhibited proliferation of CD4(+)T(EM), while blocking of CD40L on CD4(+)T(EM) abrogated proliferation of CD8(+)T(EM). Taken together, we demonstrate for the first time that the expression of CD40L is exploited on the one hand by CD8(+)T(EM) to increase the proliferation of activated CD4(+)T(EM) and on the other hand by CD4(+)T(EM) to support the expansion of activated CD8(+)T(EM). Thus, efficient T(EM) expansion requires bi-directional interactions between CD4(+) and CD8(+)T(EM) cells.  相似文献   

2.
CD8+ T cell activation depends on interaction with antigen-presenting cells (APCs) and this interaction leads to the expansion of T cells with the capacity to control infection. Using professional APCs, we demonstrate that with age, the duration of APC-T cell contact time required to achieve clonal expansion increases. Na?ve CD8+ T cells from aged mice showed no defect in antigen-induced proliferation when stimulated with APC from young mice. In contrast, CD8+ T cells from young mice exhibited reduced clonal expansion and secreted significantly lower amounts of IFN-gamma when stimulated by APCs from aged mice. The aged APCs were defective in costimulatory molecule expression and cytokine and chemokine secretion. These data indicate that defects in APC function lead to poor T cell clonal expansion and function in aging.  相似文献   

3.

Background

Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model.

Methods/Principal Findings

We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells.

Conclusions

We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro.  相似文献   

4.
In order to clarify the differential activation of CD4+ and CD8+ HSV-specific CTL, we compared the characteristics of CTL generated by different methods of in vitro HSV stimulation by treatment of effectors with anti-CD4 and anti-CD8 mAb and C after the elimination of nonspecific cytotoxic effector cells. Cell-free HSV mainly activated CD4+ CTL precursors, whereas HSV-infected fibroblasts were more effective in activating CD8+ CTL precursors than CD4+ CTL precursors. In addition, limiting dilution analyses with enriched T cells from two HSV-seropositive donors revealed that the frequency of HSV-specific CD4+ CTL precursors responsive to stimulation with free HSV was approximately 1/4,000 to 6,000 CD4+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/19,000 to 22,000 CD4+ T cells. Conversely, the frequency of CD8+ CTL precursors in peripheral blood responsive to stimulation with free HSV was approximately 1/28,000 to 30,000 CD8+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/10,000 to 11,000 CD8+ T cells. The present data suggest that generalized viral infection due to cell-free viruses is fought mainly by CD4+ CTL, which have previously been reported to possess both cytotoxicity and helper function, and that localized viral infection on HLA class II-negative fibroblasts is prevented from spreading to adjacent cells mainly by CD8+ CTL. Such differential activation of CD4+ and CD8+ CTL seems probable when considering the protective mechanisms against viral infection.  相似文献   

5.
It is clear that dendritic cells (DCs) are essential for priming of T cell responses against tumors. However, the distinct roles DC subsets play in regulation of T cell responses in vivo are largely undefined. In this study, we investigated the capacity of OVA-presenting CD4-8-, CD4+8-, or CD4-8+ DCs (OVA-pulsed DC (DC(OVA))) in stimulation of OVA-specific T cell responses. Our data show that each DC subset stimulated proliferation of allogeneic and autologous OVA-specific CD4+ and CD8+ T cells in vitro, but that the CD4-8- DCs did so only weakly. Both CD4+8- and CD4-8+ DC(OVA) induced strong tumor-specific CD4+ Th1 responses and fully protective CD8+ CTL-mediated antitumor immunity, whereas CD4-8- DC(OVA), which were less mature and secreted substantial TGF-beta upon coculture with TCR-transgenic OT II CD4+ T cells, induced the development of IL-10-secreting CD4+ T regulatory 1 (Tr1) cells. Transfer of these Tr1 cells, but not T cells from cocultures of CD4-8- DC(OVA) and IL-10-/- OT II CD4+ T cells, into CD4-8+ DC(OVA)-immunized animals abrogated otherwise inevitable development of antitumor immunity. Taken together, CD4-8- DCs stimulate development of IL-10-secreting CD4+ Tr1 cells that mediated immune suppression, whereas both CD4+8- and CD4-8+ DCs effectively primed animals for protective CD8+ CTL-mediated antitumor immunity.  相似文献   

6.
The long terminal repeat from a thymotropic mouse mammary tumor virus variant, DMBA-LV, was used to drive the expression of two reporter genes, murine c-myc and human CD4, in transgenic mice. Expression was observed specifically in thymic immature cells. Expression of c-myc in these cells induced oligoclonal CD4+ CD8+ T-cell thymomas. Expression of human CD4 was restricted to thymic progenitor CD4- CD8- and CD4+ CD8+ T cells and was shut off in mature CD4+ CD8- and CD4- CD8+ T cells, known to be derived from the progenitor double-positive T cells. These results suggest the existence of similar and common factors in CD4+ CD8- and CD4- CD8+ T cells and support a model of differentiation of CD4+ CD8+ T cells through common signal(s) involved in turning off the expression of the CD4 or CD8 gene.  相似文献   

7.
A deficiency of CD4+CD25+ regulatory T cells (CD25+ Tregs) in lymphopenic mice can result in the onset of autoimmune gastritis. The gastric H/K ATPase alpha (H/Kalpha) and beta (H/Kbeta) subunits are the immunodominant autoantigens recognized by effector CD4+ T cells in autoimmune gastritis. The mechanism by which CD25+ Tregs suppress autoimmune gastritis in lymphopenic mice is poorly understood. To investigate the antigenic requirements for the genesis and survival of gastritis-protecting CD25+ Tregs, we analyzed mice deficient in H/Kbeta and H/Kalpha, as well as a transgenic mouse line (H/Kbeta-tsA58 Tg line 224) that lacks differentiated gastric epithelial cells. By adoptive transfer of purified T cell populations to athymic mice, we show that the CD25+ Treg population from mice deficient in either one or both of H/Kalpha and H/Kbeta, or from the H/Kbeta-tsA58 Tg line 224 mice, is equally effective in suppressing the ability of polyclonal populations of effector CD4+ T cells to induce autoimmune gastritis. Furthermore, CD25+ Tregs, from either wild-type or H/Kalpha-deficient mice, dramatically reduced the expansion of pathogenic H/Kalpha-specific TCR transgenic T cells and the induction of autoimmune gastritis in athymic recipient mice. Proliferation of H/Kalpha-specific T cells in lymphopenic hosts occurs predominantly in the paragastric lymph node and was dependent on the presence of the cognate H/Kalpha Ag. Collectively, these studies demonstrate that the gastritis-protecting CD25+ Tregs do not depend on the major gastric Ags for their thymic development or their survival in the periphery, and that CD25+ Tregs inhibit the Ag-specific expansion of pathogenic T cells in vivo.  相似文献   

8.
CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion   总被引:20,自引:0,他引:20  
Naturally occurring CD4(+) regulatory T cells are generally identified through their expression of CD25. However, in several experimental systems considerable T(reg) activity has been observed in the CD4(+)CD25(-) fraction. Upon adoptive transfer, the expression of CD25 in donor-derived cells is not stable, with CD4(+)CD25(+) cells appearing in CD4(+)CD25(-) T cell-injected animals and vice versa. We show in this study that CD25(+) cells arising from donor CD25(-) cells upon homeostatic proliferation in recipient mice express markers of freshly isolated T(reg) cells, display an anergic state, and suppress the proliferation of other cells in vitro. The maintenance of CD25 expression by CD4(+)CD25(+) cells depends on IL-2 secreted by cotransferred CD4(+)CD25(-) or by Ag-stimulated T cells in peripheral lymphoid organs.  相似文献   

9.
Clonal expansion of CD8+ effector T cells in childhood tuberculosis   总被引:3,自引:0,他引:3  
The role of CD8(+) T cells in human tuberculosis (TB) remains elusive. We analyzed the T cell repertoire and phenotype in 1) children with active TB (< or =4 years), 2) healthy latently Mycobacterium tuberculosis-infected children, and 3) noninfected age-matched (tuberculin skin test-negative) controls. Ex vivo phenotyping of T cell subpopulations by flow cytometry revealed a significant increase in the proportion of CD8(+)CD45RO(-)CD62L(-)CD28(-)CD27(-) effector T cells (T(EF)) in the peripheral blood of children with active TB (22.1 vs 9.5% in latently M. tuberculosis-infected children, vs 8.5% in tuberculin skin test-negative controls). Analyses of TCR variable beta-chains revealed markedly skewed repertoires in CD8(+) T(EF) and effector memory T cells. Expansions were restricted to single TCR variable beta-chains in individual donors indicating clonal growth. CDR3 spectratyping and DNA sequencing verified clonal expansion as the cause for CD8(+) effector T cell enrichment in individual TB patients. The most prominent enrichment of highly similar T(EF) clones (>70% of CD8(+) T(EF)) was found in two children with active severe TB. Therefore, clonal expansion of CD8(+) T(EF) occurs in childhood TB with potential impact on course and severity of disease.  相似文献   

10.
After infection with LP-BM5 murine leukemia viruses, susceptible strains of mice develop a severe and progressive immunodeficiency disease, termed murine AIDS (MAIDS), features of which include markedly impaired T cell response to mitogens or specific Ag stimulation and decreased production of IL-2. Since an elevation of intracellular calcium concentration resulting from binding of Ag to the TCR is associated with IL-2 production, T cells from mice either uninfected or infected with LP-BM5 murine leukemia viruses were examined by a calcium mobilization assay. Both CD4+ and CD8+ T cells from infected mice manifested impaired calcium mobilization responses upon in vitro stimulation with anti-CD3 mAb or Con A. The abnormalities appeared early after virus inoculation and showed no difference in time course between subsets of T cells. Frequencies of prestimulation calcium-positive cells among both CD4+ and CD8+ cells in mice with MAIDS were significantly higher than those for uninfected mice. These abnormalities were associated with presence of the MAIDS-inducing defective virus genome, but were not induced by infection of mice genetically resistant to development of MAIDS or with nonpathogenic helper murine leukemia virus, a virus component that induces high spontaneous proliferation of T cells, even in MAIDS-resistant mice.  相似文献   

11.
Regulatory T cells (T(R)) play a critical role in the inhibition of self-reactive immune responses and as such have been implicated in the suppression of tumor-reactive effector T cells. In this study, we demonstrate that follicular lymphoma (FL)-infiltrating CD8+ and CD4+ T cells are hyporesponsive to CD3/CD28 costimulation. We further identify a population of FL-infiltrating CD4+CD25+GITR+ T(R) that are significantly overrepresented within FL nodes (FLN) compared with that seen in normal (nonmalignant, nonlymphoid hyperplastic) or reactive (nonmalignant, lymphoid hyperplastic) nodes. These T(R) actively suppress both the proliferation of autologous nodal CD8+CD25- and CD4+CD25- T cells, as well as cytokine production (IFN-gamma, TNF-alpha and IL-2), after CD3/CD28 costimulation. Removal of these cells in vitro by CD25+ magnetic bead depletion restores both the proliferation and cytokine production of the remaining T cells, demonstrating that FLN T cell hyporesponsiveness is reversible. In addition to suppressing autologous nodal T cells, these T(R) are also capable of suppressing the proliferation of allogeneic CD8+CD25- and CD4+CD25- T cells from normal lymph nodes as well as normal donor PBL, regardless of very robust stimulation of the target cells with plate-bound anti-CD3 and anti-CD28 Abs. The allogeneic suppression is not reciprocal, as equivalent numbers of CD25+FOXP3+ cells derived from either normal lymph nodes or PBL are not capable of suppressing allogeneic CD8+CD25- and CD4+CD25- T cells, suggesting that FLN T(R) are more suppressive than those derived from nonmalignant sources. Lastly, we demonstrate that inhibition of TGF-beta signaling partially restores FLN T cell proliferation suggesting a mechanistic role for TGF-beta in FLN T(R)-mediated suppression.  相似文献   

12.
A comparative study of immune functions of CD4+8- T cells isolated from normal and athymic nude mice by electronic cell sorting was performed. Athymic nude CD4+8- T cells expressed the TCR-associated CD3 molecule but the level of expression was significantly lower than that of normal CD4+8- T cells. Proliferative responses were studied upon stimulation by 1) the T cell mitogen Con A; 2) anti-CD3 mediated cross-linking of the CD3:TCR complex, and 3) the combined action of PMA + ionomycin. All three mitogenic stimuli caused readily detectable cell division in normal (euthymic) CD4+8- T cells. In marked contrast, none of the mitogenic stimuli induced significant proliferation in athymic nude CD4+8- T cells. The failure of athymic nude CD4+8- T cells to proliferate occurred over a wide range of mitogen concentrations and over a 4-day observation period. Neither exogenously supplied rIL-2 or mixed lymphocyte culture supernatant had any effect on the impaired proliferative response by athymic nude CD4+8- T cells. Although IL-2 was produced by athymic nude CD4+8- T cells at a reduced level when compared to normal CD4+8- T cells, it was nevertheless readily detected upon stimulation with either Con A or anti-CD3. Furthermore, stimulation of athymic nude CD4+8- T cells by anti-CD3 induced the expression of the p55 chain of IL-2R on the cell surface. Therefore, despite production of IL-2 and induced expression of IL-2R, athymic nude CD4+8- T cells failed to undergo cell division.  相似文献   

13.
Phenotypic analysis of lymphocytes that mature extrathymically in congenitally athymic nude mice has revealed a large population of CD3+ CD8+ T cells that express gamma/delta-TCR. In euthymic mice, significant numbers of cells with this phenotype are found only in the intestinal epithelium. Intestinal intraepithelial lymphocytes have been shown to be cytolytically active in vivo, as measured by the redirected lysis assay. In this communication, freshly harvested T cell subsets obtained from pooled nude mouse spleen and lymph nodes and separated by flow cytometric cell sorting were assayed for their ability to lyse FcR+ P815 targets in the presence of mAb to the epsilon-chain of the CD3 complex. CD8+, but not CD4+ or CD4- CD8-, T cells in nude mice were cytolytically active. CD8+ alpha/beta- and gamma/delta-TCR-bearing T cells from the spleen and lymph nodes of nude mice demonstrated similar cytolytic activity. No cytolytic activity of purified cell subsets was apparent in the absence of anti-CD3 mAb, even when NK-susceptible target cells were used. These data indicate that, in contrast to euthymic mice, a large proportion of CD8+ cells from the spleen and lymph nodes of nude mice are cytolytically active in vivo. In addition, these results suggest that the intestinal epithelium is not the only anatomical location where constitutively cytolytic CD8+ alpha/beta- or gamma/delta TCR-bearing T cells may be found.  相似文献   

14.
The mechanisms by which the immune system achieves constant T cell numbers throughout life, thereby controlling autoaggressive cell expansions, are to date not completely understood. Here, we show that the CD25(+) subpopulation of naturally activated (CD45RB(low)) CD4 T cells, but not CD25(-) CD45RB(low) CD4 T cells, inhibits the accumulation of cotransferred CD45RB(high) CD4 T cells in lymphocyte-deficient mice. However, both CD25(+) and CD25(-) CD45RB(low) CD4 T cell subpopulations contain regulatory cells, since they can prevent naive CD4 T cell-induced wasting disease. In the absence of a correlation between disease and the number of recovered CD4(+) cells, we conclude that expansion control and disease prevention are largely independent processes. CD25(+) CD45RB(low) CD4 T cells from IL-10-deficient mice do not protect from disease. They accumulate to a higher cell number and cannot prevent the expansion of CD45RB(high) CD4 T cells upon transfer compared with their wild-type counterparts. Although CD25(+) CD45RB(low) CD4 T cells are capable of expanding when transferred in vivo, they reach a homeostatic equilibrium at lower cell numbers than CD25(-) CD45RB(low) or CD45RB(high) CD4 T cells. We conclude that CD25(+) CD45RB(low) CD4 T cells from nonmanipulated mice control the number of peripheral CD4 T cells through a mechanism involving the production of IL-10 by regulatory T cells.  相似文献   

15.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

16.
17.
Frequency analysis of CD4+CD8+ T cells cloned with IL-4   总被引:2,自引:0,他引:2  
The coexpression of both CD4 and CD8 molecules on T cells occurs in the peripheral blood at a low frequency and can be generated transiently on CD4+ peripheral blood T cells by treatment with lectin which induces CD8 biosynthesis and cell surface expression. We have cloned T cells in a nonselective fashion from normal subjects in the presence of either IL-2, rIL-4 and IL-2, or rIL-4 and have examined the phenotypic expression of CD4 and CD8. The addition of excess rIL-4 increased the expression of CD8 on the surface of CD4+ T cell clones but did not increase CD4 expression on CD8+ T cell clones. There were three patterns of CD4 and CD8 expression observed: high density CD8 with no CD4 expression; high density CD4 with low CD8 expression; or high density CD4 with higher cell surface CD8 expression which was regulated by the presence of rIL-4. CD4+ T cell clones originally cultured in IL-2 and rIL-4 and subsequently grown in IL-2 alone exhibited decreased expression of the CD8 molecule. The increased expression of CD8 did not correlate with NK activity or lectin-dependent cytotoxicity in an antigen independent system. In addition, rIL-4 alone or in combination with IL-2 appeared to accelerate the growth curve of T cell clones as compared to IL-2 alone. These results show that IL-4 can upregulate CD8 expression on CD4+ T cell clones while not effecting CD4 expression on CD8+ T cell clones. As class I MHC is the ligand for the CD8 molecule, expression of CD8 induced by IL-4 on CD4+ T cells may allow for increased nonspecific cell to cell contact during the course of an inflammatory response.  相似文献   

18.
Valpha24 invariant (Valpha24i) CD1d-restricted NKT cells are widely regarded to have immune regulatory properties. They are known to have a role in preventing autoimmune diseases and are involved in optimally mounted immune responses to pathogens and tumor cells. We were interested in understanding how these cells provide protection in autoimmune diseases. We first observed, using EBV/MHC I tetrameric complexes, that expansion of Ag-specific cells in human PBMCs was reduced when CD1d-restricted NKT cells were concomitantly activated. This was accompanied by an increase in a CD4(-)CD8alphaalpha(+) subset of Valpha24i NKT cells. To delineate if a specific subset of NKT cells was responsible for this effect, we generated different subsets of human CD4(-) and CD4(+) Valpha24i NKT clones and demonstrate that a CD4(-)CD8alphaalpha(+) subset with highly efficient cytolytic ability was unique among the clones in being able to suppress the proliferation and expansion of activated T cells in vitro. Activated clones were able to kill CD1d-bearing dendritic or target cells. We suggest that one mechanism by which CD1d-restricted NKT cells can exert a regulatory role is by containing the proliferation of activated T cells, possibly through timely lysis of APCs or activated T cells bearing CD1d.  相似文献   

19.
These studies defined SRV-2 envelope peptides 96-102, 127-152, and 233-249 as T cell epitopes that induce significant T cell proliferation. Peripheral blood lymphocytes of Celebes macaques (Macaca nigra) exposed to SRV-2 and currently virus- antibody+, cultured with SRV-2 virus show strongly suppressed T cell responses and have two immunoregulatory T cell populations.  相似文献   

20.
Previous work has shown that abrogation of oral tolerance is mediated by T cells which are found in the CD3+, L3T4- (CD4-), and Lyt-2- (CD8-) subset (termed double-negative; DN) in mice. Inasmuch as it is known that athymic, nude (nu/nu) mice possess Thy 1+, CD4-, and CD8- T cells which also exhibit a functionally rearranged TCR gamma-chain, we investigated whether this subset of nude T cells contained functional immunoregulatory cells. In this report, we examined the phenotype and distribution of CD3+ T cells in the spleen and in the mesenteric and peripheral lymph nodes of BALB/c nu/nu mice in comparison with normal mice (+/+). In the spleens of nude mice, the predominant CD3+ T cell subpopulation was DN. Further, in mesenteric and peripheral lymph nodes, approximately one-third and one-half of the CD3+ T cells were double negative, respectively. In contrast, CD3+, DN T cells represent a small subpopulation in normal (+/+) mice. We next showed that functional regulatory T cells which possess the ability to abrogate oral tolerance were induced in nu/nu mice by Ag priming. BALB/c nude mice were immunized with SRBC, and the splenic CD3+, Vicia villosa-adherent cells were obtained by panning. Adoptive transfer of CD3+, V. villosa-adherent T cells to orally tolerant BALB/c mice restored responsiveness to SRBC, whereas V. villosa nonadherent cells were without effect. In other experiments, CD3+ T cells from the spleens of SRBC-primed mice were further enriched for the CD5+, DN phenotype and adoptive transfer of this subset completely abrogated oral tolerance to SRBC. To characterize the nature of the TCR expressed on these CD3+, DN T cells, we developed a rabbit antibody to a synthetic peptide (residues 209-218: Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) which was synthesized from a deduced sequence of the murine delta-gene. Immunoprecipitation of a cell membrane fraction from CD3+, DN T cells with anti-delta TCR antibody isolated a 45-kDa band. Furthermore, immunoprecipitation of these cells with anti-CD3 (145-2C11) revealed bands at 45 and 35 kDa (corresponding to delta- and gamma-chains, respectively). Taken together, these results are the first to show that gamma delta-TCR bearing CD3+, CD4-, and CD8- T cells are functional and reverse oral tolerance when adoptively transferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号