首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tang K  Yi J  Huang K  Zhang G 《Chirality》2009,21(3):390-395
This article reports a new chiral separation method-biphasic recognition chiral extraction for the separation of mandelic acid enantiomers. Distribution behavior of mandelic acid enantiomers was studied in the extraction system with O,O'-di-benzoyl-(2S,3S)-4-toluoyl-tartaric acid (D-(+)-DTTA) in organic phase and beta-CD derivatives in aqueous phase, and the influence of the types and concentrations of extractants and pH on extraction efficiency was investigated. Hydroxypropyl-beta-cyclodextrin (HP-beta-CD), hydroxyethyl-beta-cyclodextrin (HE-beta-CD), and methyl-beta-cyclodextrin (Me-beta-CD) have stronger recognition abilities for S-mandelic acid than those for R-mandelic acid, among which HP-beta-CD has the strongest ability. D-(+)-DTTA preferentially recognizes R-mandelic acid. pH and the concentrations of extractants have great effects on chiral separation ability. A high enantioseparation efficiency with a maximum enantioselectivity of 1.527 is obtained at pH of 2.7 and the ratio of 2:1 of [D-(+)-DTTA] to [HP-beta-CD]. The obtained results indicate that the biphasic recognition chiral extraction is of stronger chiral separation ability than the monophasic recognition chiral extraction. It may be very helpful to optimize the extraction systems and realize the large-scale production of pure enantiomers.  相似文献   

2.
Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano‐systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials. Chirality 27:613–618, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Resolution of enantiomers of chiral compounds via crystallization is the dominant method in chemical industry, but chiral recognition at the molecular level during this process is still poorly understood. Using single metal surfaces in ultrahigh vacuum as model system, the enantio-related transition from the monolayer structure into a double layer of the racemic mixture of heptahelicene has been studied with scanning tunneling microscopy. Submolecular resolution reveals enantiopure second layers on Ag(111) and almost enantiopure second layers on Au(111). In analogy to previous results on Cu(111), it is concluded that transition from the 2D first layer racemate into a layered racemate occurs.  相似文献   

4.
Thermodynamic and kinetic parameters are of prime importance for designing crystallization processes. In this article, Preferential Crystallization, as a special approach to carry out enantioselective crystallization, is described to resolve the enantiomers of the chiral fungicide fenamidone. In preliminary investigations the melting behavior and solid–liquid equilibria in the presence of solvents were quantified. The analyses revealed a stable solid phase behavior of fenamidone in the applied solvents. Based on the results obtained, a two–step crystallization route was designed and realized capable of providing highly pure enantiomers. An initial Preferential Crystallization of the racemate was performed prior to crystallizing the target enantiomer preferentially out of the enriched mother liquor. Chirality 28:514–520, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
The R enantiomers of some of the 2-arylpropionic acid non-steroidal antiinflammatory drugs (NSAIDs) are known to undergo metabolic chiral inversion to their more pharmacologically active antipodes. This process is drug and species dependent and usually unidirectional. The S to R chiral inversion, on the other hand, is rare and has been observed, in substantial extents, only for ibuprofen in guinea pigs and 2-phenylpropionic acid in dogs. After i.p. administration of single doses of racemic ketoprofen or its optically pure enantiomers to male CD-1 mice and subsequent study of the concentration time-course of the enantiomers, we noticed substantial chiral inversion in both directions. Following racemic doses, no stereoselectivity in the plasma-concentration time courses was observed. After dosing with optically pure enantiomer, the concentration of the administered enantiomer predominated during the absorption phase. During the terminal elimination phase, however, the enantiomers had the same concentrations. Our observation is suggestive of a rapid and reversible chiral inversion for ketoprofen enantiomers in mice. Chirality 9:29–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
A method is described for the synthesis and optical purity determination of (?)-(R)- and (+)-(S)-econazole via the optically pure intermediates, (R)- and (S)-imidazolylethanol, which are available by chromatographic resolution or by fractional crystallization of diastereomeric O,O′-disubstituted (R*;R*)- or (S*;S*)-tartaric acid monoesters of the parent imidazolylethanol racemate. Furthermore, this method allows the chromatographic assignment of the absolute configuration of the chiral center of the imidazolylethanol enantiomers and consequently of econazole enantiomers. In addition, a direct liquid chromatographic enantioseparation method for the determination of the optical purity of (R)- and (S)-econazole and other chiral imidazoles on a protein type CSP (OVM) is described and applied to confirm chromatographically the absolute configuration evaluations. © 1994 Wiley-Liss, Inc.  相似文献   

7.
The development of chiral HPLC methods and isolation techniques within Zeneca Agrochemicals (formerly ICI Agrochemicals) is reviewed. The use of low temperature to improve chiral separations has been successfully applied to production analysis, but although useful for some compounds it is regrettably not a universal panacea for all poor separations. The need to isolate small quantities of individual enantiomers from new compounds for research evaluation has led us to devise a more universal and cheap chiral stationary phase (CSP) for Preparative-LC. Joint academic research produced a CSP based on tartaric acid which was made commercially available and it was gratifying to find it was the only phase able to resolve a novel insecticide. However, as new CSPs emerged almost every month, our attention turned to using a universal chiral detector for analysis, rather than via separation of individual enantiomers. Diode laser-based polarimeters offered the opportunity of cheap, sensitive chiroptical detectors for HPLC and the ability to move away from chiral columns in both research and production analysis. Jointly sponsored research with a university has successfully explored the versatility of chiroptical detectors in agrochemical and food analysis. Comparison of chiral SFC with chiral HPLC and an extensive evaluation of established and research agrochemicals on a wide range of commercial CSPs have led to a revised method development strategy. Current work with high load displacement chiral chromatography will be described as a potential means of isolating pure enantiomers from racemates. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Voltage-gated sodium channels are known to be expressed in neurons and other excitable cells. Recently, voltage-gated sodium channels have been found to be expressed in human prostate cancer cells. α-Hydroxy-α-phenylamides are a new class of small molecules that have demonstrated potent inhibition of voltage-gated sodium channels. The hydroxyamide motif, an isostere of a hydantoin ring, provides an active scaffold from which several potent racemic sodium channel blockers have been derived. With little known about chiral preferences, the development of chiral syntheses to obtain each pure enantiomer for evaluation as sodium channel blockers is important. Using Seebach and Frater's chiral template, cyclocondensation of (R)-3-chloromandelic acid with pivaldehyde furnished both the cis- and trans-2,5-disubsituted dioxolanones. Using this chiral template, we synthesized both enantiomers of 2-(3-chlorophenyl)-2-hydroxynonanamide, and evaluated their ability to functionally inhibit hNa(v) isoforms, human prostate cancer cells and xenograft. Enantiomers of lead demonstrated significant ability to reduce prostate cancer in vivo.  相似文献   

9.
10.
The modern β-adrenergic agonists (β-blockers) possess one or more than one chiral center in their structure. Two enantiomers exhibit distinct pharmacodynamic and pharmacokinetic behaviors. Current progress in drug designing has resulted in the ability to understand the role of chirality in modern therapeutics. Furthermore, with a greater understanding of the molecular structure of precise drug targets, development of new drugs is directed towards the pure enantiomers instead of its racemates. The present review deals with a discussion on the stereochemical facets of chiral clinical β-blockers. This review provides details of stereo-selectivity in the pharmacological behavior of some of β-blockers and their metabolites. An effort has been made on highlighting the distinction between the therapeutic behavior of the racemic mixtures and pure enantiomers.  相似文献   

11.
In an effort to elucidate the mechanism of chiral discrimination of cholic acid-based stationary phases, the enantiomeric recognition ability of six chiral stationary phases (CSPs), prepared from differently substituted cholic acid derivatives, was evaluated in normal phase high-performance liquid chromatography (HPLC) with a series of 1,1'-binaphthyl compounds. The influence of structural variations of analytes on retention and enantioselectivity was investigated. Particularly high values of enantioselectivity were observed for the binaphthol enantiomers on a CSP prepared from the allyl 7 alpha,12 alpha-dihydroxy-3 alpha-phenylcarbamoyloxy-5 beta-cholan-24-oate. The complexes of this chiral selector with both enantiomers of binaphthol were studied as models for the interactions responsible for the enantioseparation with the cholic acid-based stationary phases. The 1:1 stoichiometry of the complex in solution was determined by UV titration. The chiral selector dissolved in chloroform exhibited a chiral discrimination for the binaphthol in (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopies. Some aromatic proton and carbon resonances of binaphthol were clearly separated into a pair of peaks due to enantiomers in the presence of the chiral selector. Moreover, on the basis of molecular mechanics calculation, a chiral discrimination model was proposed which nicely explains the relevant chromatographic behavior of the 1,1'-binaphthyl derivatives.  相似文献   

12.
A series of chiral pyridazin-3(2H)-ones was synthesized, separated as pure enantiomers, and evaluated for N-formyl peptide receptor (FPR) agonist activity. Characterization of the purified enantiomers using combined chiral HPLC and chiroptical studies (circular dichroism, allowed unambiguous assignment of the absolute configuration for each pair of enantiomers). Evaluation of the ability of racemic mixtures and purified enantiomers to stimulate intracellular Ca(2+) flux in FPR-transfected HL-60 cells and human neutrophils and to induce β-arrestin recruitment in FPR-transfected CHO-K1 cells showed that many enantiomers were potent agonists, inducing responses in the sub-micromolar to nanomolar range. Furthermore, FPRs exhibited enantiomer selectivity, generally preferring the R-(-)-forms over the S-(+)-enantiomers. Finally, we found that elongation of the carbon chain in the chiral center of the active compounds generally increased biological activity. Thus, these studies provide important new information regarding molecular features involved in FPR ligand preference and report the identification of a novel series of FPR agonists.  相似文献   

13.
The application of preferential crystallization is at present limited to conglomerate forming systems, which cover only a minor part of chiral substances. In this paper, a hybrid process is proposed that extends the applicability of the preferential crystallization principle to the more common racemic compound forming systems. It comprises a preliminary (e.g., chromatographic) enantiomeric enrichment step and preferential crystallization to finally produce the desired pure enantiomer(s). The applicability of preferential crystallization to racemic compounds is demonstrated on the example of mandelic acid as a model system. Direct monitoring of the separation progress is performed using combined online polarimetry and online density measurements. A cyclic crystallization process, which provides alternating the pure mandelic acid enantiomer and the racemic compound, is feasible and allows the resolution of rac-mandelic acid as part of the proposed hybrid approach.  相似文献   

14.
Symmetry-breaking phenomena in two-dimensional crystallization at surfaces are reviewed and the potential impact to chiral amplification in three-dimensional systems in connection with the origin of homochirality in the biomolecular world is discussed. Adsorption of prochiral molecules leads to two-dimensional conglomerates, i.e., on a local scale spontaneously to homochiral crystal structures. Small enantiomeric excess or chiral impurities in this environment install homochirality on a global scale, that is, on the entire surface.  相似文献   

15.
In our earlier work we established that stirred crystallization of achiral compounds that crystallize in enantiomeric forms result in spontaneous chiral symmetry breaking. The asymmetry thus spontaneously generated is confined to the solid state. In this article, we present a case in which the crystal enantiomeric excess (CEE) can be converted to molecular enantiomeric excess (EE) through a solid state reaction which relates the enantiomeric form of the crystal to the enantiomeric form of the product. Such a process not only provides a means of detecting the CEE generated in stirred crystallization but it is also a means through which chiral asymmetry generated spontaneously is "propagated" to generate chiral compounds with enantiomeric excess.  相似文献   

16.
Many physiological processes show a high degree of stereoselectivity, including the metabolism of xenobiotics as catalyzed by cytochrome P450 enzymes. An analysis of these chiral discrimination effects in drug metabolism is essential for an in-depth understanding of metabolic pathways that differ between enantiomers of a given chiral drug or metabolite thereof. Achiral chromatographic separation and structural identification followed by chiral analysis of metabolites from blood specimens usually requires a time-consuming multistage analytical technique. In an effort to optimize such a complicated analytical scheme, a novel two-dimensional online achiral-chiral liquid chromatography-tandem mass spectrometry (LC/LC-MS/MS) coupling method was developed by using a peak parking technique in combination with a makeup flow system. Metabolites were separated in the first dimension using a C18 reversed-phase system. A makeup eluent of water/methanol (95/5) was split into the flow before storing the metabolites separately on chiral cartridges. Subsequently, the metabolite enantiomers were eluted backward onto the analytical chiral column and separated, and the ratio of enantiomers was determined. The method was successfully validated with respect to limit of detection, linearity, intra- and interday accuracy, and precision. In the course of a human volunteer study investigating the influence of CYP (cytochrome) 2C9 genetic polymorphism on phenprocoumon (PPC) metabolism, we used this new two-dimensional online analytical technique for the analysis of PPC metabolites in plasma. The enantiomeric forms of 4'-, 6-, and 7-hydroxy-PPC metabolites as well as two novel metabolites were identified, and the ratio of the enantiomers was calculated. We found that the enantiomeric ratio for the different metabolites in the plasma sample of each measured individual differs markedly from a nearly 100% chiral discrimination for the two new putative metabolites. This new analytical coupling method possesses general utility in the analysis of chiral discrimination effects, particularly as it relates to pharmacokinetics and dynamics, a scientific field that is rapidly becoming an area of concern and interest.  相似文献   

17.
The resolution of chiral compound‐forming systems using hybrid processes was discussed recently. The concept is of large relevance as these systems form the majority of chiral substances. In this study, a novel hybrid process is presented, which combines pertraction and subsequent preferential crystallization and is applicable for the resolution of such systems. A supported liquid membrane applied in a pertraction process provides enantiomeric enrichment. This membrane contains a solution of a chiral compound acting as a selective carrier for one of the enantiomers. Screening of a large number of liquid membranes and potential carriers using the conductor‐like screening model for realistic solvation method led to the identification of several promising carriers, which were tested experimentally in several pertraction runs aiming to yield enriched (+)‐(S)‐mandelic acid (MA) solutions from racemic feed solutions. The most promising system consisted of tetrahydronaphthalene as liquid membrane and hydroquinine‐4‐methyl‐2‐quinolylether (HMQ) as chiral carrier achieving enantiomeric excesses of 15% in average. The successful production of (+)‐(S)‐MA with a purity above 96% from enriched solutions by subsequent preferential crystallization proved the applicability of the hybrid process. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Lin K  Xu C  Zhou S  Liu W  Gan J 《Chirality》2007,19(3):171-178
Chiral high-performance liquid chromatography (HPLC) is one of the most powerful tools to prepare enantiopure standards of chiral compounds. In this study, the enantiomeric separation of imidazolinone herbicides, i.e., imazethapyr, imazapyr, and imazaquin, was investigated using chiral HPLC. The enantioselectivity of Chiralpak AS, Chiralpak AD, Chiralcel OD, and Chiralcel OJ columns for the three analytes was compared under similar chromatographic conditions. Chiralcel OJ column showed the best chiral resolving capacity among the test columns. The resolved enantiomers were distinguished by their signs of circular dichroism detected at 275 nm and their structures confirmed with LC-mass spectrometric analysis. Factors affecting the chiral separation of imidazolinones on Chiralcel OJ column were characterized. Ethanol acted as a better polar modifier than the other alcohols including 2-propanol, 1-butanol, and 1-pentanol. Although the acidic modifier in the mobile phase did not influence chiral recognition, it was necessary for reducing the retention time of enantiomers and suppressing their peak tailing. Thermodynamic evaluation suggests that enantiomeric separation of imidazolinones on Chiralcel OJ column is an enthalpy-driven process from 10 to 40 degrees C. This study also shows that small amounts of pure enantiomers of imidazolinones may be obtained by using the analytical chiral HPLC approach.  相似文献   

19.
A chiral derivatizing reagent, N-succinimidyl-2-(S)-methoxy-2-phenylacetic acid ester (SMPA), directed toward reaction with primary amine-containing compounds has been synthesized and characterized. This reagent is suitable for HPLC resolution from enzymatic-scale reactions where only microgram quantities of chiral products may be obtainable. SMPA derivatization was shown to be effective in the resolution of the enantiomers of a number of different racemic compounds. SMPA was used to resolve the diastereoisomeric derivatives of a previously unknown enzymatically oxygenated product, allowing determination of the stereochemical course of the enzymatic reaction. SMPA is easily prepared from an inexpensive, commercially available, and enantiomerically pure precursor with the formation of a shelf-stable crystalline product which is utilizable in water-containing solutions. In addition to its usefulness for micro-determinations, SMPA is useful for preparative-scale resolutions of enantiomers since the reagent is cleaved from the diastereoisomeric derivative by acid hydrolysis.  相似文献   

20.
Fluoroquinolones are popular class of antibiotics with distinct chemical functionality. Most of them are ampholytes with one chiral center. Stereogeneic center is located either in the side ring of Gatifloxacin (GFLX) or in the quinolone core of Ofloxacin (OFLX). These two amphoteric fluoroquinolones have terminal amino groups in common. The unusual Nadifloxacin (NFLX) is an acidic fluoroquinolone with a core chiral center. Owing to chirality and functionality differences among GFLX, OFLX, and NFLX, we mapped these enantiomers onto structure‐retention relationship. Amount of acetic acid modifier was studied in screened mobile phase and cellulose tris(3‐chloro‐4‐methyl phenyl carbamate) (Lux cellulose‐2) stationary phase. Experimental design of acetic acid% along with column temperature have been applied. Resolution and enantioselectivity have been related to structural features of the studied enantiomers. High amount of acid (0.4%) was optimum for the separation of either side chirality with a proximate amino group (GFLX) or core chirality without basic functionality (NFLX), while low amount (0.2%) is optimum for core chiral center with distal amino group (OFLX). Temperature has no significant effect on resolution and retention of enantiomers except for OFLX. Enantio‐retention explains possible chiral selective and nonselective interactions. The proposed methods have been validated for pharmaceutical analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号