首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Vinblastine sulfate was administered to adult rats by intravenous injections. Kidney cortex was fixed after 1, 2, or 5 hours of treatment and studied by routine transmission electron microscopy.In control animals, cells of distal convoluted tubules possessed numerous microtubules with an average diameter of 280 Å. In treated animals, the microtubules of these cells were reduced in number, and paracrystalline inclusions characteristic of vinblastine treatment were common. Macrotubules (570 Å average diameter) were also present and often were seen close to, or in apparent continuity with, paracrystals. Since the work of others indicates that vinblastine-induced paracrystals contain microtubular protein (tubulin), observation of continuities between paracrystals and macrotubules is interpreted as evidence that macrotubules are also composed of tubulin and that macrotubules may become incorporated into paracrystals.Unlike the ordinary microtubules of cells of the distal tubules, vinblastine-induced macrotubules exhibited cross-striations in longitudinal view and subunit structure in cross section.Macrotubules and paracrystals were also observed in cells of the proximal convoluted tubule, mesangium, glomerular endothelium, parietal epithelium of Bowman's capsule, and visceral epithelium of Bowman's capsule. Continuities between macrotubules and paracrystals, although relatively common in occurrence in distal tubule cells, were only rarely seen in the other kinds of cells examined. Acknowledgements. The authors gratefully acknowledge the technical help of Mrs. Dawn Bockus, Miss Judy Groombridge, Mrs. Jeri Hunter, Mrs. Jolan Pinter, Miss Franque Remington, Miss Mary Stewart, Miss Louise Young, Mr. Reginald Pickering, and Mr. W. J. Masten. This research was supported by N.I.H. grants AM 16 236, GM 00 100, and HE 03 174, by Institutional Cancer Grant IN-26L from the American Cancer Society, and by the Graduate School Research Fund of the University of Washington.  相似文献   

2.
The inhibition of the polymerization of tubulin from cultured cells of rose (Rosa. sp. cv. Paul's scarlet) by colchicine and the binding of colchicine to tubulin were examined in vitro and compared with data obtained in parallel experiments with bovine brain tubulin. Turbidimetric measurements of taxol-induced polymerization of rose microtubules were found to be sensitive and semiquantitative at low tubulin concentrations, and to conform to some of the characteristics of a nucleation and condensation-polymerization mechanism for assembly of filamentous helical polymers. Colchicine inhibited the rapid phase of polymerization at 24°C with an apparent inhibition constant (K i) of 1.4·10-4 M for rose tubulin and an apparent K i=8.8·10-7 M for brain tubulin. The binding of [3H]colchicine to rose tubulin to form tubulin-colchicine complex was mildly temperature-dependent and slow, taking 2–3 h to reach equilibrium at 24°C, and was not affected by vinblastine sulfate. The binding of [3H]colchicine to rose tubulin was saturable and Scatchard analysis indicated a single class of low-affinity binding sites having an apparent affinity constant (K) of 9.7·102 M-1 and an estimated molar binding stoichiometry (r) of 0.47 at 24°C. The values for brain tubulin were K=2.46·106 M-1 and r=0.45 at 37°C. The binding of [3H]colchicine to rose tubulin was inhibited by excess unlabeled colchicine, but not by podophyllotoxin or tropolone. The data demonstrate divergence of the colchicine-binding sites on plant and animal tubulins and indicate that the relative resistance of plant microtubule polymerization to colchicine results from a low-affinity interaction of colchicine and tubulin.Abbreviations MT microtubule - TC tubulin-colchicine complex  相似文献   

3.
Summary— The pH-related change in morphology of vinblastine (VLB)-induced paracrystals formed in Chinese hamster ovary (CHO) cells was examined immunohistochemically in order to determine both the mechanism of tubulin crystallization and the influence of acidic pHs on cytoskeletal microtubules. Lowering the extracellular pH (pHe) rapidly reduced the intracellular pH (pHi) in CHO cells. Lowering the pHi to near the neutral range significantly accelerated the growth of VLB-induced paracrystals, compared to that of paracrystals formed at a physiological pHe. However, further cytoplasmic acidification caused by the addition of sodium azide into the culture medium induced the disappearance of typical paracrystals and the appearance of a highly organized meshwork of tubulin appearing as short, thick filaments at the light microscopic level. Treatments using different concentrations of VLB at different pHe's showed that low pHi's (6.7 and 6.3) suppressed paracrystal-formation at lower concentrations of VLB (5×10?6 M and 10?5 M). At higher concentrations of VLB (5×10?5 M and 10?4 M), only short filaments were formed at pHi 6. 3. Electron microscopy revealed that the filaments had a ladder-like structure probably consisting of a stacked series of fused rings. This indicates that paracrystals may be modified by extremely low pH. These results show that paracrystals are unstable in living cells and that their formation is regulated by environmental pH.  相似文献   

4.
The effects of microtubule inhibitors on the spectral properties of leaves of wheat ( Triticum aestivum L. cv. Walde) and on the presence of plastid microtubule–like structures (MTLS) during etioplast to chloroplast transformation were examined. Amiprophos-methyl (APM, 0.1 m M ), fed to leaf sections of 7-day-old dark-grown wheat, reduced the ration of phototransformable to non-phototransformable proto-chlorophyllide (PChlide), decreased the rate of the Shibata shift, and inhibited chlorophyll accumulation and grana stacking. The spectral properties of isolated etioplasts were not affected by APM. Colchicine (10 m M ), fed to leaf sections, inhibited greening but had no effect on the PChlide ratio or the Shibata shift. MTLS were still visible on electron micrographs after treatment with APM or colchicine at frequencies similar to controls. A third inhibitor, vinblastine, had no effect on the spectral properties of non-irradiated or irradiated etiolated leaves except at concentrations that produced visible tissue damage before the irradiation. The effects of APM and colchicine may reflect inhibitions of respiration and protein synthesis, respectively. It is concluded that MTLS are insensitive to microtubule inhibitors and thus are probably not composed of tubulin.  相似文献   

5.
Treatment of root-tip cells of Triticum turgidum with 1 M mannitol solution for 30 min induces microtubule (Mt) disintegration in the plasmolyzed protoplasts. Interphase plasmolyzed cells possess many cortical, perinuclear and endoplasmic macrotubules, 35 nm in mean diameter, forming prominent arrays. In dividing cells macrotubules assemble into aberrant mitotic and cytokinetic apparatuses resulting in the disturbance of cell division. Putative tubulin paracrystals were occasionally observed in plasmolyzed cells. The quantity of polymeric tubulin in plasmolyzed cells exceeds that in control cells. Root-tip cells exposed for 2-8 h to plasmolyticum recover partially, although the volume of the plasmolyzed protoplast does not change detectably. Among other events, the macrotubules are replaced by Mts, chromatin assumes its typical appearance and the cells undergo typical cell divisions. Additionally, polysaccharidic material is found in the periplasmic space. Oryzalin and colchicine treatment induced macrotubule disintegration and a significant reduction of protoplast volume in every plasmolyzed cell type examined, whereas cytochalasin B had only minor effects restricted to differentiated cells. These results suggest that Mt destruction by hyperosmotic stress, and their replacement by tubulin macrotubules and putative tubulin paracrystals is a common feature among angiosperms and that macrotubules are involved in the mechanism of protoplast volume regulation.  相似文献   

6.
Spontaneous autophagocytosis was observed in mouse seminal vesicle cells during incubation for 2 h in vitro. The number of autophagic vacuoles formed was greatest at 37 degrees C and decreased when the temperature was lowered. At 22 degrees C it reached the near-zero value characteristic of non-incubated control cells. Incubation of the cells at 37 degrees C in the presence of 0.1 mg/ml vinblastine sulfate resulted in a marked increase in the number of autophagic vacuoles, but the drug was ineffective at 22 degrees C. Puromycin (10(-3) M) exerted no influence on spontaneous autophagocytosis, but cycloheximide in concentrations from 10(-7) M to 10(-3) M inhibited both spontaneous and vinblastine-induced autophagocytosis. The formation of tubulin paracrystals in vinblastine treated cells was not prevented either by low (22 degrees C) temperature or in the presence of cycloheximide.  相似文献   

7.
The cellular distribution of the glucocorticoid receptor (GR) in relation to various intracellular and plasma membrane structures in human fibroblasts was studied using indirect immunofluorescence techniques with monoclonal and polyclonal antibodies. During interphase, GR was located predominantly in the cytoplasm, showing a similar pattern as tubulin. In mitotic cells, GR and tubulin were localized in mitotic spindles and in telophase midbodies. Colchicine and vinblastine induced a similar redistribution of GR and tubulin to the cell periphery. This redistribution was reversible for colchicine but not for vinblastine. Vinblastine also induced paracrystals containing GR and tubulin. These results support the hypothesis that GR interacts in vivo with cytoplasmic microtubules.  相似文献   

8.
In vitro and in vivo effects of vincristine on the Golgi complex of leukaemic lymphoblasts were studied. The cells incubated in vitro for 4 hours with vincristine of 1.25 x 10(-5) M concentration lacked microtubules, but regularly contained paracrystals and parallel arrays of macrotubules associated with ribosomes. The Golgi complex in control lymphoblasts was represented by 1-3 dictyosomes (stacks of cisternae) grouped in one area. After exposure to vincristine the dictyosomes lay at a considerable distance from each other. In many of them the cisternae were shorter than in controls and distended or transformed into large vacuoles. In cells incubated in vitro with lower concentrations of vincristine (1.25 x 10(-6) and 1.25 x 10(-7) M) and in cells obtained after the second therapeutic dose of vincristine (in the course of normal clinical treatment) neither changes in the Golgi complex nor formation of paracrystals and macrotubules were observed.  相似文献   

9.
Ali MB  Hahn EJ  Paek KY 《Plant cell reports》2006,25(10):1122-1132
Roots of Panax ginseng exposed to various concentrations of Cu (0.0, 5, 10.0, 25.0, and 50.0 μM) accumulated high amounts of Cu in a concentration-dependent and duration-dependent manner. Roots treated with 50 μM Cu resulted in 52% and 89% growth inhibition after 20 and 40 days, respectively. Saponin synthesis was stimulated at a Cu concentration between 5 and 25 μM but decreased at 50 μM Cu. Malondialdehyde content (MDA), lipoxygenase activity (LOX), superoxide ion (O2 •−) accumulation, and H2O2 content at 5 and 10 μM Cu-treated roots were not increased but strongly increased at 50 μM Cu resulting in the oxidation of ascorbate (ASC) and glutathione (GSH) to dehydroascorbate (DHA) and glutathione disulfide (GSSG), respectively indicating a clear oxidative stress. Seven well-resolved bands of superoxide dismutase (SOD) were detected in the gel and an increase in SOD activity seemed to be mainly due to the induction of Fe-SOD 3. Five to 10 μM Cu slightly induced activity of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR), guaiacol peroxidase (G-POD) but inhibited monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) enzyme activities. No changes in catalase (CAT) activity and in activity gel were found up to 25 μM Cu, but both G-POD and CAT activities were inhibited at 50 μM Cu. Glutathione metabolism enzymes such as γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST), and glutathione peroxidase activities (GPx) were activated at 5 and 10 μM Cu but were strongly inhibited at 50 μM Cu due to the Cu accumulation in root tissues. The strong depletion of GSH at 50 μM Cu was associated to the strong induction of γ-glutamyltranspeptidase (γ-GGT) activity. These results indicate that plant could grow under Cu stress (5–25 μM) by modulating the antioxidant defense mechanism for combating Cu induced oxidative stress.  相似文献   

10.
The processes of tubulin paracrystal induction in Chinese hamster ovary cells treated with a Vinca alkaloid, ie, vinblastine or vincristine, and treated simultaneously with one of the Vinca alkaloids and colcemid or colchicine were followed by four different microscopic techniques, in particular by tubulin-immunofluorescence. Vinca alkaloid alone, in lower concentrations, induced basically tactoid or needle-shaped (N-shaped) paracrystals. However, the formation of crystalloid was greatly enhanced by increasing the concentration of Vinca alkaloid. Square or barrel-shaped (S-shaped) and hexagonal paracrystals were also commonly induced by simultaneous treatment with a Vinca alkaloid and colcemid or colchicine. Large rectangular paracrystals often displayed fibrillar or lamellar fine structures which ran perpendicular to the long axis but tended to cleave into fragments by spontaneous splitting. Electron micrographs revealed the fine structure of crystalloids to be aggregates of numerous filaments. The growth of paracrystals, particularly N-shaped crystals, was markedly inhibited when cells were exposed to drug(s) at a low temperature (4 degrees C). We confirmed that both N- and S-shaped paracrystals dissociated rapidly after the culture medium was replaced with fresh, drug-free medium. Glutaraldehyde-fixed paracrystals treated with RNase solution were stained with acridine orange, showing a weak orange color. Possible factors involved in the assembly and disassembly of tubulin paracrystals are discussed.  相似文献   

11.
12.
Colchicine-binding activity of mouse liver high-speed supernate has been investigated. It has been found to be time and temperature dependent. Two binding activities with different affinities for colchicine seem to be present in this high-speed supernate, of which only the high-affinity binding site (half maximal binding at 5 x 10(-6) M colchicine) can be attributed to microtubular protein by comparison with purified tubulin. Vinblastine interacted with this binding activity by precipitating it when used at high concentrations (2 x 10(- 3) M), and by stabilizing it at low concentrations (10(-5) M). Lumicolchicine was found not to compete with colchicine. The colchicine-binding activity was purified from liver and compared with that of microtubular protein from brain. The specific binding activity of the resulting preparation, its electrophoretic behavior, and the electron microscope appearance of the paracrystals obtained upon its precipitation with vinblastine permitted its identification as microtubular protein (tubulin). Electrophoretic analysis of the proteins from liver supernate that were precipitated by vinblastine indicated that this drug was not specific for liver tubulin. Preincubation of liver supernate with 5 mM EGTA resulted in a time- dependent decrease of colchicine-binding activity, which was partly reversed by the addition of Ca++. However, an in vitro formation of microtubules upon lowering the Ca++ concentration could not be detected. Finally, a method was developed enabling that portion of microtubular protein which was present as free tubulin to be measured and to be compared with the total amount of this protein in the tissue. This procedure permitted demonstration of the fact that, under normal conditions, only about 40% of the tubulin of the liver was assemled as microtubules. It is suggested that, in the liver, rapid polymerization and depolymerization of microtubules occur and may be an important facet of the functional role of the microtubular system.  相似文献   

13.
The resistance of brain 32S tubulin oligomer to factors suppressing the microtubules formation: colchicine, CaCl2, cooling and the absence of GTP is studied. The content of oligomer in the preparation and the polymerization degree were estimated by means of analytical centrifugation. Colchicine at 25 degrees and at a concentration of 10 muM does not change and at a concentration of 100 muM only slightly decreases the content of oligomer. The oligomer dissociated (but not completely) in 1 mM colchicine. Tubulin polymerization was partly suppressed by 10 muM and completely--by 100 muM colchicine. CaCl2 at 1 and 10 mM concentrations did not destroy the oligomer but inhibited its polymerization even in lesser of these concentrations. The cooling of the incubation medium to 14 degrees C or 4 degrees C completely inhibited the polymerization and did not affect the content of oligomer in the preparations. Tbulin preparations with low amount of exogenous GTP (less than or equal 3.10(-6) M) had a usual oligomer content, whereas GTP is necessary for polymerization at concentrations exceeding 10(-4) M. Thus, the reaction of tubulin oligomerization is relatively resistant to factors preventing the microtubules assembly. This probably means that there are at least two types of intereaction between tubulin molecules: 1) bonds in microtubules which are sensitive to colchicine, Ca2+ and cold, and which are formed only in the presence of nucleosidetriphosphates; 2) bonds in 32S tubulin oligomer which are more stable and do not need in exogenous nucleotides.  相似文献   

14.
Electron microscopic investigations on the foraminifer Allogromia laticollaris showed that after treatment with 10(-3) M vinblastine tubulin paracrystals can be demonstrated in intermitotic nuclei. As these paracrystals are either membrane coated or lie free in the karyoplasm, and as in the perinuclear cytoplasm, membrane coated paracrystals can be demonstrated as well, it is assumed that the cytoplasmic tubulin which is composing the intranuclear division spindle can transverse the intact nuclear envelope via vesicle transport.  相似文献   

15.
An efficient protocol was developed for micropropagation of an economically important timber-yielding multipurpose tree, Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes (CNs) derived from 18-d-old axenic seedlings on Murashige and Skoog (MS) medium supplemented with thidiazuron (TDZ) (0.1–10 μM). The highest shoot regeneration frequency (90%) and maximum number (15.2 ± 0.20) of shoots per explant was recorded on MS medium amended with 0.4 μM TDZ. Continuous presence of TDZ inhibited shoot elongation. In the primary medium, TDZ-initiated cultures were transferred to the secondary medium supplemented with another cytokinin, 6-benzyladenine (BA), for shoot growth and elongation. Maximum (90%) shoot elongation with an average shoot length of 5.4 ± 0.06 cm was observed at 5 μM BA. To further enhance the number of shoots per explant, mother tissue was repeatedly subcultured on fresh shoot induction medium after each harvest of newly formed shoots. Thus, by adopting this strategy, an average of 44 shoots per explant could be obtained. About 65% of in vitro regenerated shoots produced a maximum number (4.4 ± 0.2) of roots per shoot by a two-step culture procedure employing pulse treatment and subsequent transfer of treated shoots to a low concentration of 0.2 μM indole-3-butyric acid along with phloroglucinol (3.96 μM). The in vitro-raised plantlets were successfully acclimatized first under culture room conditions, then to greenhouse with 70% survival rate.  相似文献   

16.
Summary Four antimicrotubule herbicides, amiprophosmethyl (APM), pronamide, oryzalin, and trifluralin, were evaluated for their ability to induce chromosome doubling in anther-derived, haploid maize callus. Effects of various herbicide treatments on the growth and regenerative capacity of callus along with the ploidy and seed set of regenerated plants were determined. Flow cytometric analysis was also used to measure changes in ploidy levels of callus cells following treatments. More than 50% of the cells were doubled in chromosome number after the haploid callus was treated with 5 or 10 M APM or 10 M pronamide for 3 days. A similar proportion of plants regenerated from the treated callus produced seed upon self-pollination. APM and pronamide did not inhibit callus growth at these concentrations and the treated callus retained a high plant regeneration capacity. Oryzalin very effectively induced chromosome doubling, but severely inhibited the growth of regenerable callus and plant regeneration. Trifluralin induced chromosome doubling in a small proportion of cells at lower concentrations (0.5 and 1 M), however, at a higher concentration (5 M) it inhibited callus growth and plant regeneration. The results indicate that APM and pronamide may be useful agents for inducing chromosome doubling of anther-derived maize haploid callus at very low concentrations.  相似文献   

17.
The changes in activities of soluble and cell wall-bound peroxidases and lignin contents in juglone-stressed soybean (Glycine max) seedlings and their relationships with root growth were investigated. Soybean seedlings (3-d-old) were cultivated in nutrient solution supplemented with 0.5 to 25 μM juglone for 24 h. Length and dry mass of roots decreased after 5 to 25 μM juglone treatments. Low juglone concentrations (≤ 1 μM) increased soluble peroxidase activity, while high concentrations (≥ 10 μM) inhibited activities of soluble and cell wall-bound peroxidases. Juglone (≤ 1 μM) did not affect lignin content but highly increased lignification after 5 to 25 μM treatments. Results indicate that lignification may be an important step in root growth reduction of juglone-stressed soybean.  相似文献   

18.
L M Cherry  D E Merry 《Cytobios》1986,45(180):45-53
Antitubulin immunofluorescent staining was used to examine the relationship among crystal formation, mitotic arrest, and recovery potential in vinblastine-treated Chinese hamster cells. Although vinblastine caused a mitotic block at concentrations as low as 5 x 10(-9) M, it induced tubulin crystal formation only at concentrations higher than 10(-6) M. At these higher concentrations, cells took 48-72 h to recover after return to normal medium. This extended period of time was apparently needed for breakdown of the crystals and regeneration of normal cytoplasmic microtubules. At concentrations less than 10(-6) M, although the mitotic block was still effective, no crystals were present. Possibly because of this lack of crystal formation, the cells recovered rapidly, generating cytoplasmic microtubules within 30 min, and beginning to undergo mitosis within 60 min. These findings tend to support biochemical evidence that tubulin binds to vinblastine at two types of binding site: a high affinity, low capacity site, responsible for tubulin disaggregation; and a low affinity site, responsible for protofilament splaying.  相似文献   

19.
A protocol for plant regeneration from protoplasts of Musa acuminata cv. Mas (AA) via somatic embryogenesis was developed. Viable protoplasts were isolated from embryogenic cell suspensions at a yield of 1.2 × 107 protoplasts/ml packed cell volume (PCV). Liquid and feeder layer culture systems with medium-A and medium-B were used for protoplast culture. In liquid culture system, medium-B was more efficient for inducing cell division (17.5% at 14 days) and colony formation (6.7% at 28 days) than medium-A. However, all protoplast-derived cell colonies (PDCC) obtained from liquid culture system could not develop further. In feeder layer culture system, there was no significant difference between medium-A and medium-B on cell division and colony formation of the cultured protoplasts, and the cell division frequency at 14 days and colony formation frequency at 28 days were 24.5% and 11.2%, respectively, in medium-B. Comparative study on the effects of BAP (2.2 μM, 4.4 μM, 8.8 μM), zeatin (0.4 μM, 0.8 μM, 1.2 μM) and TDZ (0.2 μM, 0.4 μM, 0.6 μM) on embryo formation of PDCC from feeder-layer culture indicated that TDZ was best. TDZ at 0.4 μM induced 7906 mature embryos per ml PCV PDCC, which was 4-fold the frequency as with BAP at 4.4 μM, 7.5-fold as with zeatin at 0.8 μM and 150-fold as control medium (no mentioned cytokinins) after 45 days on M3 medium. About 44% of the mature embryos were converted into plantlets with poor root system after subculture on M4 medium. Root further development of regenerated plantlets was promoted by addition of activated charcoal (AC) to MS basal medium.  相似文献   

20.
An efficient protocol to improve microspore embryogenesis is established in an important oleiferous crop, Brassica juncea (Indian mustard). Colchicine was used for enhancing microspore embryogenesis and also to obtain doubled haploid embryos. Colchicine at high concentrations (>10 mg l−1), for 24 h, proved convenient for direct recovery of diploid embryos. Higher temperature treatment and an antiauxin PCIB (p-chlorophenoxyisobutyric acid) enhanced microspore embryogenesis significantly as compared to colchicine. An increase in temperature from 32°C to 35°C proved very efficient in increasing embryogenesis by 10-fold. The highest embryogenesis rate was obtained when PCIB was added at 35°C in the culture after 1 day of culture initiation. 20 μM PCIB could enhance microspore embryogenesis by 5-fold. Different abnormal shapes of embryos like lemon, banana, flask and fused cotyledons were observed. Both normal and fused cotyledonous embryos showed normal germination when transferred on the B5 basal medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号