首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Antibodies were raised against specific peptides from N-terminal regions of the alpha1 and alpha3 isoforms of the GABA(A) receptor, and used to assess the relative expression of these proteins in the superior frontal and primary motor cortices of 10 control, nine uncomplicated alcoholic and six cirrhotic alcoholic cases were matched for age and post-mortem delay. The regression of expression on post-mortem delay was not statistically significant for either isoform in either region. In both cortical areas, the regression of alpha1 expression on age differed significantly between alcoholic cases, which showed a decrease, and normal controls, which did not. Age had no effect on alpha3 expression. The alpha1 and alpha3 isoforms were found to be expressed differentially across cortical regions and showed a tendency to be expressed differentially across case groups. In cirrhotic alcoholics, alpha1 expression was greater in superior frontal than in motor cortex, whereas this regional difference was not significant in controls or uncomplicated alcoholics. In uncomplicated alcoholics, alpha3 expression was significantly lower in superior frontal than in motor cortex. Expression of alpha1 was significantly different from that of alpha3 in the superior frontal cortex of alcoholics, but not in controls. In motor cortex, there were no significant differences in expression between the isoforms in any case group.  相似文献   

2.
Application of DNA microarrays to study human alcoholism   总被引:5,自引:0,他引:5  
An emerging idea is that long-term alcohol abuse results in changes in gene expression in the brain and that these changes are responsible at least partly for alcohol tolerance, dependence and neurotoxicity. The overall goal of our research is to identify genes which are differentially expressed in the brains of well-characterized human alcoholics as compared with non-alcoholics. This should identify as-yet-unknown alcohol-responsive genes, and may well confirm changes in the expression of genes which have been delineated in animal models of alcohol abuse. Cases were carefully selected and samples pooled on the basis of relevant criteria; differential expression was monitored by microarray hybridization. The inherent diversity of human alcoholics can be exploited to identify genes associated with specific pathological processes, as well as to assess the effects of concomitant disease, severity of brain damage, drinking behavior, and factors such as gender and smoking history. Initial results show selective changes in gene expression in alcoholics; of particular importance is a coordinated reduction in genes coding for myelin components.  相似文献   

3.
A quantitative neuropathological necropsy study of the human cerebral cortex showed that the number of cortical neurones in the superior frontal cortex in chronic alcoholic patients is significantly reduced compared with that in controls matched for age and sex. The number of neurones in the motor cortex did not differ significantly between the controls and alcoholics, but in both cortical regions there was evidence that alcoholic patients had smaller (shrunken) neurones than controls. Further studies are necessary to identify other regions of the cerebral cortex that are selectively damaged in brain damage associated with alcohol.  相似文献   

4.
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics. A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.  相似文献   

5.
6.
7.
Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution.  相似文献   

8.
Molecular mechanisms behind the etiology and pathophysiology of major depressive disorder and suicide remain largely unknown. Recent molecular studies of expression of serotonin, GABA and CRH receptors in various brain regions have demonstrated that molecular factors may contribute to the development of depressive disorder and suicide behaviour. Here, we used microarray analysis to examine the expression of genes in brain tissue (frontopolar cortex) of individuals who had been diagnosed with major depressive disorder and died by suicide, and those who had died suddenly without a history of depression. We analyzed the list of differentially expressed genes using pathway analysis, which is an assumption-free approach to analyze microarray data. Our analysis revealed that the differentially expressed genes formed functional networks that were implicated in cell to cell signaling related to synapse maturation, neuronal growth and neuronal complexity. We further validated these data by randomly choosing (100 times) similarly sized gene lists and subjecting these lists to the same analyses. Random gene lists did not provide highly connected gene networks like those generated by the differentially expressed list derived from our samples. We also found through correlational analysis that the gene expression of control participants was more highly coordinated than in the MDD/suicide group. These data suggest that among depressed individuals who died by suicide, wide ranging perturbations of gene expression exist that are critical for normal synaptic connectively, morphology and cell to cell communication.  相似文献   

9.
10.
Several recent gene expression studies identified hundreds of genes that are correlated with age in brain and other tissues in human. However, these studies used linear models of age correlation, which are not well equipped to model abrupt changes associated with particular ages. We developed a computational algorithm for age estimation in which the expression of each gene is treated as a dichotomized biomarker for whether the subject is older or younger than a particular age. In addition, for each age-informative gene our algorithm identifies the age threshold with the most drastic change in expression level, which allows us to associate genes with particular age periods. Analysis of human aging brain expression datasets from three frontal cortex regions showed that different pathways undergo transitions at different ages, and the distribution of pathways and age thresholds varies across brain regions. Our study reveals age-correlated expression changes at particular age points and allows one to estimate the age of an individual with better accuracy than previously published methods.  相似文献   

11.
Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global ‘rewiring‘ of coexpression systems involving glial and immune signaling as well as neuronal genes.  相似文献   

12.
Many neurodegenerative diseases have a hallmark regional and cellular pathology. Gene expression analysis of healthy tissues may provide clues to the differences that distinguish resistant and sensitive tissues and cell types. Comparative analysis of gene expression in healthy mouse and human brain provides a framework to explore the ability of mice to model diseases of the human brain. It may also aid in understanding brain evolution and the basis for higher order cognitive abilities. Here we compare gene expression profiles of human motor cortex, caudate nucleus, and cerebellum to one another and identify genes that are more highly expressed in one region relative to another. We separately perform identical analysis on corresponding brain regions from mice. Within each species, we find that the different brain regions have distinctly different expression profiles. Contrasting between the two species shows that regionally enriched genes in one species are generally regionally enriched genes in the other species. Thus, even when considering thousands of genes, the expression ratios in two regions from one species are significantly correlated with expression ratios in the other species. Finally, genes whose expression is higher in one area of the brain relative to the other areas, in other words genes with patterned expression, tend to have greater conservation of nucleotide sequence than more widely expressed genes. Together these observations suggest that region-specific genes have been conserved in the mammalian brain at both the sequence and gene expression levels. Given the general similarity between patterns of gene expression in healthy human and mouse brains, we believe it is reasonable to expect a high degree of concordance between microarray phenotypes of human neurodegenerative diseases and their mouse models. Finally, these data on very divergent species provide context for studies in more closely related species that address questions such as the origins of cognitive differences.  相似文献   

13.
14.
15.
DNA array technology now allows an enormous amount of expression data to be obtained. For large-scale gene profiling enterprises, this is of course welcome. However, the scientist interested in follow-up studies of a handful of differentially expressed genes may find it hard to sift through the vast datasets to pinpoint genes with the most desirable and reliable behaviors. Here, we present the methodology we have employed to discover genes differentially expressed in the adult mouse brain. We first used Affymetrix microarrays to compare gene expression from five different brain regions: the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray. Second, we identified genes differentially expressed within three distinct amygdala subnuclei. In this case, the tissue was microdissected by laser-capture to minimize contamination from adjacent subnuclei, and extracted RNA was subjected to three rounds of linear amplification prior to hybridization to the microarrays. To select candidate genes, we developed a custom algorithm to identify those genes with the most robust changes in expression across different replicate samples. Confirmation of expression patterns with in situ hybridization uncovered further criteria to consider in the selection process.  相似文献   

16.
17.
18.
A gene expression profile of Alzheimer's disease.   总被引:12,自引:0,他引:12  
Postmortem analysis of brains of patients with Alzheimer's disease (AD) has led to diverse theories about the causes of the pathology, suggesting that this complex disease involves multiple physiological changes. In an effort to better understand the variety and integration of these changes, we generated a gene expression profile for AD brain. Comparing affected and unaffected brain regions in nine controls and six AD cases, we showed that 118 of the 7050 sequences on a broadly representative cDNA microarray were differentially expressed in the amygdala and cingulate cortex, two regions affected early in the disease. The identity of these genes suggests the most prominent upregulated physiological correlates of pathology involve chronic inflammation, cell adhesion, cell proliferation, and protein synthesis (31 upregulated genes). Conversely, downregulated correlates of pathology involve signal transduction, energy metabolism, stress response, synaptic vesicle synthesis and function, calcium binding, and cytoskeleton (87 downregulated genes). The results support several separate theories of the causes of AD pathology, as well as add to the list of genes associated with AD. In addition, approximately 10 genes of unknown function were found to correlate with the pathology.  相似文献   

19.
Cellular prion protein (PrP(c)) is a glycoprotein expressed at low to moderate levels within the nervous system. Recent studies suggest that PrP(c) may possess neuroprotective functions and that its expression is upregulated in certain neurodegenerative disorders. We investigated whether PrP(c) expression is altered in the frontal and occipital cortex in two well-characterized neurodegenerative disorders--Alzheimer's disease (AD) and diffuse Lewy body disease (DLBD)--compared with that in normal human brain using immunohistochemistry and computerized image analysis. The distribution of PrP(c) was further tested for correlation with glial reactivity. We found that PrP(c) was localized mainly in the gray matter (predominantly in neurons) and expressed at higher levels within the occipital cortex in the normal human brain. Image analysis revealed no significant variability in PrP(c) expression between DLBD and control cases. However, blood vessels within the white matter of DLBD cases showed immunoreactivity to PrP(c). By contrast, this protein was differentially expressed in the frontal and occipital cortex of AD cases; it was markedly overexpressed in the former and significantly reduced in the latter. Epitope specificity of antibodies appeared important when detecting PrP(c). The distribution of PrP(c) did not correlate with glial immunoreactivity. In conclusion, this study supports the proposal that regional changes in expression of PrP(c) may occur in certain neurodegenerative disorders such as AD, but not in other disorders such as DLBD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号