首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adhesion of human platelets to immobilized trimeric collagen   总被引:7,自引:3,他引:4       下载免费PDF全文
Human platelets adhere to trimeric Type 1 chick collagen that was covalently linked to plastic slides, providing the basis for a well- defined quantitative assay. The number of platelets that adhere is a function both of platelet concentration and of collagen density on the slides. In contrast with other in vitro assays using collagen that is not covalently linked to the substratum, we found no platelet-platelet aggregation. Adhesion was absolutely dependent on Mg2+, whereas Ca2+ was ineffective. Native trimeric collagen conformation was required for adhesion, since platelets did not bind to slides containing heat- denatured collagen, or isolated alpha 1(1) or or alpha 2(1) chains. Modifications of collagen oligosaccharides had no effect on adhesion. Adhesion was inhibited by cytochalasin D but was not affected by prostaglandin E1, apyrase, acetylsalicylic acid, or theophylline. Because this assay measures platelet-collagen adhesion in the absence of platelet-platelet aggregation, it should facilitate identification of the platelet surface components that directly mediate this adhesion.  相似文献   

2.
Collagen fibers or a glycoprotein VI-specific collagen-related peptide (CRP-XL) stimulated tyrosine phosphorylation of the focal adhesion kinase, p125(fak) (FAK), in human platelets. An integrin alpha(2)beta(1)-specific triple-helical peptide ligand, containing the sequence GFOGER (single-letter nomenclature, O = Hyp) was without effect. Antibodies to the alpha(2) and beta(1) integrin subunits did not inhibit platelet FAK tyrosine phosphorylation caused by either collagen fibers or CRP-XL. Tyrosine phosphorylation of FAK caused by CRP-XL or thrombin, but not that caused by collagen fibers, was partially inhibited by GR144053F, an antagonist of integrin alpha(IIb)beta(3). The intracellular Ca(2+) chelator, BAPTA, and the protein kinase C inhibitor, Ro31-8220, were each highly effective inhibitors of the FAK tyrosine phosphorylation caused by collagen or CRP-XL. These data suggest that, in human platelets, 1) occupation or clustering of the integrin alpha(2)beta(1) is neither sufficient nor necessary for activation of FAK, 2) the fibrinogen receptor alpha(IIb)beta(3) is not required for activation of FAK by collagen fibers, and 3) both intracellular Ca(2+) and protein kinase C activity are essential intermediaries of FAK activation.  相似文献   

3.
We have investigated possible interactions of divalent-cation-requiring processes and cytochalasin-sensitive processes in the early events of lymphocyte activation. In lectin-stimulated responses, Ca and Mg were synergistic in support of protein and DNA synthesis, as expressed in the increased requirement for one ion under conditions of depletion of the other. Experiments evaluating the temporal relationships between cytochalasin sensitivity and requirements for Ca and Mg demonstrated that both cations were required before or during the early cytochalasin B-sensitive events. Furthermore, we observed that Ca and Mg and cytochalasin B-sensitive processes were required for lectin-dependent commitment to DNA synthesis. Additional studies comparing the relative potencies of cytochalasin E, D, and B suggested that the probable target for cytochalasins in the inhibition of commitment was a motility-related process. These data demonstrate an early period of activation which can be characterized by its requirement for divalent cations and its sensitivity to cytochalasins.  相似文献   

4.
The action of phospholipases A2 and C in the course of collagen-stimulated platelet activation and the effect of cytochalasins on the responses were studied. Stimulation of human platelets with collagen was accompanied by aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release. However, in the presence of a cyclooxygenase inhibitor or a thromboxane A2 (TXA2) receptor antagonist, collagen induced only weak arachidonic acid release and weak inositol phosphate formation. The TXA2 mimetic agonist U46619 induced all the responses except for arachidonic acid release, which was induced by synergistic action of collagen and U46619. The result that U46619 did not induce arachidonic acid release despite the activation of phospholipase C suggested that arachidonic acid was not released via phospholipase C but by phospholipase A2. These findings suggested that collagen initially induced weak activation of phospholipases A2 and C and that further activation of phospholipase C as well as Ca2+ mobilization and aggregation were induced by TXA2, whereas further activation of phospholipase A2 required the synergistic action of collagen and TXA2. Platelets pretreated with cytochalasins did not respond to collagen. Further analysis revealed that the initial activation of phospholipases A2 and C was specifically inhibited by cytochalasins, but the responses induced by U46619 or a synergistic action of collagen and U46619 were not inhibited. Therefore, we proposed that interaction of collagen receptor with actin filaments might have some roles in the collagen-induced initial activation of phospholipases.  相似文献   

5.
A method was developed to study the adhesion of platelets to fibrillar collagen at 37 degrees C in the absence of aggregation. Human platelets were labeled with [3H]-oleic acid, gel-filtered, and incubated with collagen in the presence of receptor antagonists to thromboxane A2, 5-hydroxytryptamine, and platelet-activating factor, as well as a fibrinogen/fibronectin inhibitor and an ADP-removing system. Those platelets that adhered to collagen were separated from those that did not by filtration through a 10-microns nylon mesh and the extent of platelet adhesion was quantitated by determination of the radioactivity retained by the mesh. The extent of platelet adhesion was proportional to the amount of collagen added up to 100 micrograms/ml and was essentially complete by 1 min. At least 80-90% of the platelets were capable of adhering to collagen. Adhesion was potentiated by the presence of extracellular Mg2+ and this potentiation was inhibited by extracellular Ca2+. Phosphatidic acid increased markedly in those platelets that adhered to collagen and this was associated with increases in cytosolic free Ca2+ levels that could be detected using the fluorescent Ca2+ indicator fura-2.  相似文献   

6.
A study has been carried out on the action of cytoskeleton and metabolic inhibitors on intracellular multiplication in HeLa cells of a virulent strain of Legionella pneumophila serogroup 6. The effects of the substances were separately tested on both penetration and intracellular multiplication of L. pneumophila. Only cytochalasin A and 2-deoxy-d -glucose (2dG) affected bacterial internalisation, whereas intracellular multiplication was inhibited by cytochalasins A, B, C, D and J (D being the most active) and by 2dG with a dose-response effect. The action of 2dG was counteracted by 50 mM glucose. Experiments carried out with cytochalasin D and a rhodamine-phalloidin conjugate showed the involvement of cytoskeletal elements in intracellular multiplication of Legionella; compounds acting on microtubules had no effect.  相似文献   

7.
The role of Ca2+ in stimulation of H+ gastric secretion by cAMP-dependent and -independent secretagogues was studied in isolated rabbit glands using Ca2+ ionophore, A23187, and an intracellular Ca2+ chelator (BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) incorporated as its acetoxymethyl ester (BAPTA-AM). Acetylcholine (ACh), tetragastrin (TG), histamine and forskolin induced a transitory increase of intracellular Ca2+ concentration, [Ca2+]i, measured in gastric glands loaded with Ca2+-sensitive dye fura-2, and provoked an acid secretory response evaluated with aminopyrine accumulation ratio (AP ratio). The Ca2+-ionophore A23187 also induced an increase in [Ca2+]i and in AP ratio. cAMP-dependent secretagogues were more potent stimulants of acid secretion than cAMP-independent secretagogues. cAMP analogue, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-BR-cAMP) induced an increase in AP ratio without modifying [Ca2+]i. BAPTA-AM (5-25 microM) induced a transient decrease of resting [Ca2+]i which returned to basal level due to extracellular Ca2+ entry. Increases in [Ca2+]i produced by ACh and TG were abolished by BAPTA and those produced by Ca2+ ionophore A23187 were partially buffered. BAPTA inhibited in a dose-dependent manner H+ secretion induced by cholinergic and gastrinergic stimulants in the presence of cimetidine. A23187 increased the AP ratio to values similar to those obtained with ACh or TG and was not inhibited by BAPTA. BAPTA partially inhibited (40%) the increase in AP ratio induced by forskolin and histamine inspite of the complete inhibition of the Ca2+ response. BAPTA did not inhibit the response to 8-BR-cAMP. BAPTA inhibition of forskolin stimulation was reversed by A23187 and the response was potentiated. These results indicate that ACh and TG response are completely dependent on an increase of [Ca2+]i. The response to cAMP-dependent agonists histamine and forskolin depend both on Ca2+ and cAMP. For forskolin stimulation the response may be the result of a potentiation between Ca2+ and cAMP.  相似文献   

8.
FMLP诱导的嗜中性白细胞呼吸爆发与凋亡的关系研究   总被引:1,自引:0,他引:1  
The relationship between apoptosis of neutrophils and the change of their intracellular free Ca2+ concentration [Ca2+]i was studied. FMLP and A23187 were used to elevate the [Ca2+]i while BAPTA was used to deplete it. Fluorescence microscope, flow cytometry and gel electrophoresis were used to study the percentage of cell apoptosis and the change of f-actin during apoptosis. The results showed that the apoptosis was obviously inhibited by fMLP and A23187, while accelerated by BAPTA. The detection of f-actin showed that the f-actin depolymerized obviously during apoptosis. The elevation of [Ca2+]i inhibit the actin depolymerization while depletion of [Ca2+]i accelerated it. This result indicated that the apoptosis of neutrophil was obviously inhibited by [Ca2+]i elevation but accelerated by [Ca2+]i depletion.  相似文献   

9.
Harper AG  Sage SO 《Cell calcium》2007,42(6):606-617
We have previously demonstrated a role for the reorganization of the actin cytoskeleton in store-operated calcium entry (SOCE) in human platelets and interpreted this as evidence for a de novo conformational coupling step in SOCE activation involving the type II IP(3) receptor and the platelet hTRPC1-containing store-operated channel (SOC). Here, we present evidence challenging this model. The actin polymerization inhibitors cytochalasin D or latrunculin A significantly reduced Ca2+ but not Mn2+ or Na+ entry into thapsigargin (TG)-treated platelets. Jasplakinolide, which induces actin polymerization, also inhibited Ca2+ but not Mn2+ or Na+ entry. However, an anti-hTRPC1 antibody inhibited TG-evoked entry of all three cations, indicating that they all permeate an hTRPC1-containing store-operated channel (SOC). These results indicate that the reorganization of the actin cytoskeleton is not involved in SOC activation. The inhibitors of the Na+/Ca2+ exchanger (NCX), KB-R7943 or SN-6, caused a dose-dependent inhibition of Ca2+ but not Mn2+ or Na+ entry into TG-treated platelets. The effects of the NCX inhibitors were not additive with those of actin polymerization inhibitors, suggesting a common point of action. These results indicate a role for two Ca2+ permeable pathways activated following Ca2+ store depletion in human platelets: A Ca2+-permeable, hTRPC1-containing SOC and reverse Na+/Ca2+ exchange, which is activated following Na+ entry through the SOC and requires a functional actin cytoskeleton.  相似文献   

10.
Ohmori T  Yatomi Y  Inoue K  Satoh K  Ozaki Y 《Biochemistry》2000,39(19):5797-5807
The newly described adapter molecule p130 Crk-associated substrate (Cas) has been reported to contribute to cytoskeletal organization through assembly of actin filaments and to be pivotal in embryonic development and in oncogene-mediated transformation. We characterized the regulation of Cas tyrosine phosphorylation in highly differentiated, anucleate platelets. Phospholipase C-activating receptor agonists, including collagen, thrombin receptor-activating peptide (TRAP), and U46619 (a thromboxane A2 analogue), and A23187 (a Ca2+ ionophore) induced rapid Cas tyrosine phosphorylation in platelets. 12-O-Tetradecanoylphorbol 13-acetate and 1-oleoyl-2-acetyl-sn-glycerol, protein kinase C (PKC) activators, also induced Cas tyrosine phosphorylation, albeit sluggishly. Cas tyrosine phosphorylation induced by collagen or TRAP was transient in aggregating platelets; Cas became dephosphorylated in a manner dependent on integrin alpha IIb beta 3-mediated aggregation. While BAPTA-AM (an intracellular Ca2+ chelator) inhibited Cas phosphorylation induced by collagen or TRAP, Ro31-8220 (a PKC inhibitor) rather prolonged it. Under the conditions, this PKC inhibitor suppressed platelet aggregation but not intracellular Ca2+ mobilization. In contrast to Cas involvement in focal adhesions in other cells, platelet Cas phosphorylation preceded the activation of focal adhesion kinase (FAK), and blockage of alpha IIb beta 3-mediated platelet aggregation with a GRGDS peptide resulted in prolongation of stimulation-dependent Cas tyrosine phosphorylation but in suppression of FAK tyrosine phosphorylation. Furthermore, TRAP-induced Cas phosphorylation was insensitive to cytochalasin D, an actin polymerization inhibitor. The failure of FAK to associate with Cas in immunoprecipitation studies also suggests that Cas tyrosine phosphorylation is independent of FAK activation. Of the signaling molecules investigated in this study, Src seemed to associate with Cas. Finally, Cas existed mainly in cytosol and membrane cytoskeleton fractions in the resting state, and remained unchanged during platelet aggregation, when FAK translocated to the cytoskeletal fraction. Our findings on platelet Cas suggest that (i) rapid Cas tyrosine phosphorylation occurs following phosphoinositide turnover by receptor-mediated agonists and may be mediated by intracellular Ca2+ mobilization; (ii) PKC activation, by itself, may elicit sluggish Cas phosphorylation; (iii) Cas tyrosine dephosphorylation, but not phosphorylation, is dependent on integrin alpha IIb beta 3-mediated aggregation; and (iv) Cas is not involved in cytoskeletal reorganization. Anucleate platelets seem to provide a unique model system to fully elucidate the functional role(s) of Cas.  相似文献   

11.
Once platelets are activated, the first event to occur is a rapid change in shape, associated with Ca2+/calmodulin-dependent myosin light chain (MLC) phosphorylation and with Rho kinase activation. The purpose of this study was to investigate which is the biochemical pathway that leads to platelet shape change in response to convulxin, a selective GpVI activator, and to verify whether MLC phosphorylation is essential for this process. The inhibition of the Ca2+-dependent pathway by means of the Ca2+ chelator BAPTA, the Ca2+/calmodulin inhibitor W-7 or the cAMP enhancing drug iloprost reduced about 50% of platelet shape change in response to convulxin. The treatment with either the Rho kinase inhibitors Y27632 or HA 1077 had no effect on platelet shape change induced by convulxin. When both Ca2+/calmodulin-dependent and Rho kinase-dependent pathways were concomitantly inhibited by the combined use of Y27632 plus BAPTA, W-7 or iloprost, platelet shape change was completely abolished. Our findings suggest that convulxin-induced platelet shape change occurs via both pathways, the Ca2+/calmodulin-dependent, which appears to be more important, and the Rho kinase-dependent one. The pattern of MLC phosphorylation was not modified by Rho kinase inhibitors. Conversely, the inhibition of the Ca2+-dependent pathway caused a strong reduction of MLC phosphorylation in BAPTA-treated platelets, and a total inhibition in W-7 or iloprost-treated platelets. Our results demonstrate that following Rho kinase-dependent pathway platelet shape change can occur without the involvement of MLC phosphorylation.  相似文献   

12.
The interaction of fibrinogen with the integrin alphaIIbbeta3 plays a crucial role in platelet adhesion and platelet activation leading to the generation of intracellular signals that nucleate the reorganization of the cytoskeleton. Presently, we have only a limited understanding of the signaling cascades and effector proteins through which changes in the cytoskeletal architecture are mediated. The present study identifies phospholipase Cgamma2 (PLCgamma2) as an important target of the Src-dependent signaling cascade regulated by alphaIIbbeta3. Real time phasecontrast microscopy is used to show that formation of filopodia and lamellapodia in murine platelets on a fibrinogen surface is dramatically inhibited in the absence of PLCgamma2. Significantly, the formation of these structures is mediated by Ca2+ elevation and activation of protein kinase C, both directly regulated by PLC activity. With the involvement of Syk, SLP-76, and Btk, alphaIIbbeta3-induced PLCgamma2 activation partly overlaps with the pathway used by the collagen receptor glycoprotein VI. Important differences, however, exist between the two signaling cascades in that activation of PLCgamma2 by alphaIIbbeta3 is unaltered in murine platelets, which lack the FcR gamma-chain or the adaptor LAT, but is abolished in the presence of cytochalasin D. Therefore, PLCgamma2 plays not only a crucial role in activation of alphaIIbbeta3 by collagen receptors but also in alphaIIbbeta3-mediated responses.  相似文献   

13.
All of the common cytochalasins activate superoxide anion release and exocytosis of beta-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 0.2 microM cytochalasin A, C greater than 2 microM cytochalasin B greater than or equal to 4-5 microM cytochalasin D, E. While maximal rates of O2- release and extents of exocytosis require extracellular calcium (1-2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibit either cytochalasin B- or E-stimulated O2- production with IC50 values of 5-10 mM and inhibition occurs whether Cl-, NO3- or SCN- is the anion added with Na+ or K+. Release of beta-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl(IC50 approximately 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of beta-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2- or beta-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

14.
Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 microg/ml)- stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metalloproteinase- 9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular Ca2+ mobilization, and thromboxane A2 (TXA2) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or TXA2 synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular Ca2+ mobilization and TXA2 production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.  相似文献   

15.
We investigated the role of a Ca(2+) channel and intracellular calcium concentration ([Ca(2+)](i)) in osmotic stress-induced JNK activation and tight junction disruption in Caco-2 cell monolayers. Osmotic stress-induced tight junction disruption was attenuated by 1,2-bis(2-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-mediated intracellular Ca(2+) depletion. Depletion of extracellular Ca(2+) at the apical surface, but not basolateral surface, also prevented tight junction disruption. Similarly, thapsigargin-mediated endoplasmic reticulum (ER) Ca(2+) depletion attenuated tight junction disruption. Thapsigargin or extracellular Ca(2+) depletion partially reduced osmotic stress-induced rise in [Ca(2+)](i), whereas thapsigargin and extracellular Ca(2+) depletion together resulted in almost complete loss of rise in [Ca(2+)](i). L-type Ca(2+) channel blockers (isradipine and diltiazem) or knockdown of the Ca(V)1.3 channel abrogated [Ca(2+)](i) rise and disruption of tight junction. Osmotic stress-induced JNK2 activation was abolished by BAPTA and isradipine, and partially reduced by extracellular Ca(2+) depletion, thapsigargin, or Ca(V)1.3 knockdown. Osmotic stress rapidly induced c-Src activation, which was significantly attenuated by BAPTA, isradipine, or extracellular Ca(2+) depletion. Tight junction disruption by osmotic stress was blocked by tyrosine kinase inhibitors (genistein and PP2) or siRNA-mediated knockdown of c-Src. Osmotic stress induced a robust increase in tyrosine phosphorylation of occludin, which was attenuated by BAPTA, SP600125 (JNK inhibitor), or PP2. These results demonstrate that Ca(V)1.3 and rise in [Ca(2+)](i) play a role in the mechanism of osmotic stress-induced tight junction disruption in an intestinal epithelial monolayer. [Ca(2+)](i) mediate osmotic stress-induced JNK activation and subsequent c-Src activation and tyrosine phosphorylation of tight junction proteins. Additionally, inositol 1,4,5-trisphosphate receptor-mediated release of ER Ca(2+) also contributes to osmotic stress-induced tight junction disruption.  相似文献   

16.
We have previously reported that a component of ADP-evoked Ca2+ entry in human platelets appears to be promoted following the release of Ca2+ from intracellular stores. Other agonists may employ a similar mechanism. Here we have further investigated the relationship between the state of filling of the Ca2+ stores and plasma membrane Ca2+ permeability in Fura-2-loaded human platelets. Ca2+ influx was promoted following store depletion by inhibitors of the endoplasmic reticulum Ca(2+)-ATPase, thapsigargin (TG) and 2,5-di-(t-butyl)-1,4-benzohydroquinone (tBuBHQ). Divalent cation entry was confirmed by quenching of Fura-2 fluorescence with externally added Mn2+. It has been suggested that cytochrome P-450 may couple Ca2+ store depletion to an increased plasma membrane Ca2+ permeability. In apparent agreement with this, Mn2+ influx promoted by TG and tBuBHQ, or by preincubation of cells in Ca(2+)-free medium, was inhibited by the imidazole antimycotics, econazole and miconazole, which inhibit cytochrome P-450 activity. Agonist-evoked Mn2+ influx was only partially inhibited by these compounds at the same concentration (3 microM). Econazole (3 microM) reduced the Mn2+ quench evoked by ADP by 38% of the control value and that evoked by vasopressin, platelet activating factor (PAF) and thrombin no more than 15% of control, 20 s after agonist addition. Stopped-flow fluorimetry indicated that econazole had no detectable effect on the early time course of agonist-evoked Mn2+ entry or rises in [Ca2+]i. These data confirm the existence of a Ca2+ entry pathway in human platelets which is activated by depletion of the intracellular Ca2+ stores. Further, the results support the suggestion that cytochrome P-450 may participate in such a pathway. However, any physiological role for the cytochrome or its products in agonist-evoked events appears to be in the long-term maintenance or restoration of store Ca2+ content, rather than in promoting Ca2+ influx in the initial stages of platelet Ca2+ signal generation.  相似文献   

17.
The effects of ionophores, which can carry alkali metal cations, on platelet aggregation were examined. At an alkaline extracellular pH, alkali metal cation/H+ exchanger nigericin accelerated aggregation in K+-enriched medium, whereas it rather inhibited aggregation in Na+-enriched medium, even though the intracellular pH was only slightly alkaline. The inhibitory effect of Na+ on platelet aggregation was more clearly shown with the alkali metal cation exchanger gramicidin D. The ionophore had no effect or a slightly accelerative effect on aggregation in K+-enriched medium, whereas it significantly inhibited aggregation induced by thrombin, ADP and platelet activating factor in Na+-enriched medium. Fluorescence studies on fura-2-labeled platelets revealed that in Na+-enriched medium gramicidin D inhibited agonist-induced Ca2+ mobilization both in the presence and absence of extracellular Ca2+. These results suggest that the intracellular Na+ inhibits platelet aggregation by inhibiting Ca2+ mobilization.  相似文献   

18.
There is considerable evidence, reviewed by Brostrom and Brostrom [1], that Ca2+ stores are involved in the regulation of protein synthesis. We provide evidence in HeLa cells that is consistent with their findings that depletion of Ca2+ stores and not changes in cytosolic free Ca2+ ([Ca2+]i) inhibit protein synthesis, but we also show that the mechanism leading to depletion is critical. Specifically, depletion of stores by the Ca(2+)-mobilizing hormone histamine does not inhibit protein synthesis. In assessing the role of Ca2+ stores in protein synthesis, experiments in certain cell types have been complicated by the use of Ca2+ ionophores, which simultaneously elevate [Ca2+]i and deplete Ca2+ stores. We have measured total cell Ca2+, [Ca2+]i and protein synthesis in HeLa cells under conditions that allowed evaluation of the separate contributions of stores and [Ca2+]i. Using 1,2-bis(2-aminophenoxyethane)-N,N,N'N'-tetraacetic acid (BAPTA) as an intracellular Ca2+, chelator and thapsigargin, which inhibits the membrane Ca(2+)-ATPase of storage vesicles, total cell Ca2+ can be depleted and this depletion is enhanced by extracellular EGTA which blocks Ca2+ influx; [Ca2+]i is actually lowered by BAPTA under these conditions. Protein synthesis is inhibited by BAPTA in the presence of EGTA and by thapsigargin with or without EGTA. However, histamine which with EGTA, affects an equal degree of Ca2+ depletion does not inhibit protein synthesis. Thus, it is suggested that Ca2+ stores are not homogeneous, and that the hormone-sensitive store specifically does not play a role in the regulation of protein synthesis. In this respect, the hormone-sensitive and insensitive stores do not functionally communicate and may be separately regulated.  相似文献   

19.
The Ca2+ chelators, EGTA and BAPTA, have been introduced into intact, isolated rat pancreatic acini using a hypotonic swelling method. This resulted in complete inhibition of amylase release, stimulated by carbamylcholine at a submaximal concentration and 82 - 85% inhibition at maximal concentrations. Acini swollen in the absence of Ca2+ chelators showed similar secretory responses to those of unswollen acini. Treatment of unswollen acini with chelators inhibited the maximum response to carbamylcholine by only 23%. The inhibitory effect of intracellular chelators was not due to ATP depletion or a lowering of the total cell Ca2+ content. Thus, these results provide the first direct demonstration that an increase in intracellular Ca2+ concentration is necessary for the stimulation of enzyme release from pancreatic acinar cells.  相似文献   

20.
Cytochalasins are routinely used to stimulate a variety of functions in eukaryotic cells even though their precise mode of action remains to be elucidated. In the present work we used the fluorescent Ca2+ indicator quin2 to study the effect of various cytochalasins, cytochalasins A, B, C, D, E (CA, CB, CC, CD, CE) and dihydrocytochalasin B (dhCB) on the intracellular Ca2+ concentration ([Ca2+]i) in various types of leukocytes, viz, neutrophils and lymphocytes. In human neutrophils, cytochalasins increase [Ca2+]i mainly by releasing Ca2+ from membrane-bound, intracellular stores. Thus, in order to readily appreciate the effect of cytochalasins on [Ca2+ )i, these cells must be loaded with low intracellular quin2 concentrations. On the other hand, in peripheral blood lymphocytes, splenocytes and thymocytes, the increase in [Ca2+]i is predominantly due to an increased Ca2+ influx from the extracellular medium. In addition, we found that in neutrophils these drugs prolong the increase in [Ca2+]i induced by chemotactic peptides, probably by increasing the cell permeability to Ca2+. Finally, in thymocytes, cytochalasins potentiate the production of inositol phosphates induced by the polyclonal mitogen concanavalin A (conA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号