首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
葡萄糖转运子蛋白4(glucose transporter 4,GLUT4)在维持体内葡萄糖动态平衡的过程中起着至关重要的作用。GLUT4贮存囊泡(GLUT4 storage vesicle,GSV)和神经内分泌细胞中的分泌囊泡含有许多相同的蛋白。研究证明这些蛋白调节了分泌囊泡的胞内转运过程,但是GLUT4囊泡和分泌囊泡是否具有相同的胞内动态过程还未阐明。文章以3T3-L1纤维原细胞中的GSV和神经内分泌细胞PC12细胞中的分泌囊泡:致密核心大囊泡(large dense core vesicle,LDCV)为研究对象,使用消散场显微成像技术和单微粒跟踪技术直观观察了活体细胞内单个GSV和LDCV的三维运动轨迹。通过以适当方程拟合单个囊泡的均方位移曲线,发现两种囊泡都具有三种运动模式。定量分析显示作自由扩散运动和方向性扩散运动的GSV数量明显多于LDCV。对比GSV和LDCV的三维扩散系数,发现GSV的扩散系数中值为7.2×10-4μm2/s,而LDCV的扩散系数中值仅为1.94×10-4μm2/s。这一结果说明GSV的活动性远大于LDCV,提示GSV的胞内转运过程涉及不同的分子机制。  相似文献   

2.
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport.  相似文献   

3.
Insulin-responsive GLUT4 (glucose transporter 4) translocation plays a major role in regulating glucose uptake in adipose tissue and muscle. Whether or not there is a specialized secretory GSV (GLUT4 storage vesicle) pool, and more importantly how GSVs are translocated to the PM (plasma membrane) under insulin stimulation is still under debate. In the present study, we systematically analyzed the dynamics of a large number of single GLUT4-containing vesicles in 3T3-L1 adipocytes by TIRFM (total internal reflection fluorescence microscopy). We found that GLUT4-containing vesicles can be classified into three groups according to their mobility, namely vertical, stable, and lateral GLUT4-containing vesicles. Among these groups, vertical GLUT4-containing vesicles exclude transferrin receptors and move towards the PM specifically in response to insulin stimulation, while stable and lateral GLUT4-containing vesicles contain transferrin receptors and show no insulin responsiveness. These data demonstrate that vertical GLUT4-containing vesicles correspond to specialized secretory GSVs, which approach the PM directly and bypass the constitutive recycling pathway. Contributed equally to this work Supported by the National Natural Science Foundation of China (Grant Nos. 30470448 and 30130230), the National key Basic Research Program of China (Grant No. 2004CB720000), the Knowledge Innovative Program of The Chinese Academy of Sciences (Grant Nos. KSCX2-SW-224 and Y2004018), the Li Foundation and the Sinogerman Scientific Center.  相似文献   

4.
Intracellular vesicles, comprised of protein clusters, were individually tracked inside human brain cancer cells and characterized to simultaneously determine the average vesicle size and effective cytoplasmic viscosity. The cells were transfected with a TGF‐β superfamily gene, non‐steroidal anti‐inflammatory drug‐Activated Gene‐1 (NAG‐1) tagged with green fluorescent proteins (GFPs). Using total internal reflection fluorescent microscopy (TIRFM) the individual movements of the vesicles were categorized into either Brownian, caged, or directional type motion. In the near‐field region confined by the evanescent wave field of TIRFM, the hindrance of these vesicles was created by interactions with the glass coverslip and/or sub‐cellular structures. Measured particle motions were compared with theoretical predictions of hindered motion to estimate the unknown size and viscosity parameters using a nonlinear regression technique. For the tested human brain cancer cells, the average vesicle size and effective intracellular fluid viscosity were calculated to be 496 nm and 0.068 Pa s, respectively. This finding suggests that most of the hindrance experienced by vesicles can be due to non‐hydrodynamic interactions with microtubules and other intracellular structures. It should be also noted that this method provides a way to examine changes in vesicle size due to outside stimulus such as drug interaction, cytotoxicity, etc., unlike standard measurement techniques which require fixing the cells themselves. Biotechnol. Bioeng. 2011;108: 2504–2508. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.  相似文献   

6.
目的:通过培养3T3-L1前脂肪细胞,并诱导其分化至成熟,研究游离脂肪酸对脂肪细胞糖代谢的影响。方法:培养诱导3T3-L1脂肪细胞,用油红O染色鉴定并比较其形态结构的变化。LPS、EPA、SA、PA干预成熟脂肪细胞,收集不同时间的培养基,葡萄糖氧化酶法算出各组脂肪细胞的葡萄糖消耗量。用Western blot检测不同时间各组干预后细胞AMPK、GLUT4蛋白含量。结果:油红O染色鉴定成熟脂肪细胞胞浆中的脂滴染成红色,并出现戒环样结构;诱导分化第8天,90%以上细胞均分化成熟。含LPS、EPA、SA、PA的培养基作用于成熟脂肪细胞,随着时间的延长,显著抑制脂肪细胞对葡萄糖的吸收(P<0.05),同时,脂肪细胞AMPK、GLUT4蛋白含量在减少(P<0.05)。结论:游离脂肪酸可以诱导胰岛素抵抗的分子机制可能是通过胰岛素信号通路激活蛋白激酶(AMPK),进而影响GLUT4的蛋白表达,使脂肪细胞的葡萄糖吸收率减低,影响脂肪细胞的糖代谢。  相似文献   

7.
Previous microarray analyses revealed that LMO4 is expressed in 3T3-L1 preadipocytes, however, its roles in adipogenesis are unknown. In the present study, using RT-PCR sequencing and quantitative real-time RT-PCR, we confirmed that LMO4 gene is expressed in 3T3-L1 preadipocytes and its expression peaks at the early stage of 3T3-L1 preadipocyte differentiation. Further analyses showed that LMO4 knockdown decreased the proliferation of 3T3-L1 preadipocytes, and attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Collectively, our findings indicate that LMO4 is a novel modulator of adipogenesis.  相似文献   

8.
9.
Shang W  Yang Y  Jiang B  Jin H  Zhou L  Liu S  Chen M 《Life sciences》2007,80(7):618-625
Evidence has accumulated that ginseng and its main active constituents, ginsenosides, possess anti-diabetic and insulin-sensitizing properties which may be partly realized by regulating adipocyte development and functions. In the present study, we explored the effect of ginsenoside Rb(1), the most abundant ginsenoside in ginseng root, on adipogenesis of 3T3-L1 cells. We found that with standard differentiation inducers, ginsenoside Rb(1) facilitated adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner; 10 microM Rb(1) increased lipid accumulation by about 56%. Treatment of differentiating adipocytes with 10 microM Rb(1) increased the expression of mRNA and protein of PPARgamma(2) and C/EBPalpha, as well as mRNA of ap2, one of their target genes. After the treatment of differentiating adipocytes with Rb(1), basal and insulin-mediated glucose uptake was significantly augmented, accompanied by the up-regulation of mRNA and protein level of GLUT4, but not of GLUT1. In addition, ginsenoside Rb(1) also inhibited the proliferation of preconfluent 3T3-L1 preadipocytes. Our data indicate that anti-diabetic and insulin-sensitizing activities of ginsenosides, at least in part, are involved in the enhancing effect on PPARgamma2 and C/EBPalpha expression, hence promoting adipogenesis.  相似文献   

10.
To explore a novel adipokine, we screened adipocyte differentiation-related gene and found that TIG2/chemerin was strongly induced during the adipocyte differentiation. Chemerin was secreted by the mature 3T3-L1 adipocytes and expressed abundantly in adipose tissue in vivo as recently described. Intriguingly, the expression of chemerin was differently regulated in the liver and adipose tissue in db/db mice. In addition, serum chemerin concentration was decreased in db/db mice. Chemerin and its receptor/ChemR23 were expressed in mature adipocytes, suggesting its function in autocrine/paracrine fashion. Finally, chemerin potentiated insulin-stimulated glucose uptake concomitant with enhanced insulin signaling in the 3T3-L1 adipocytes. These data establish that chemerin is a novel adipokine that regulates adipocyte function.  相似文献   

11.
BackgroundAquaporin-8 (AQP8), a member of the aquaporin water channel family, is expressed in various tissue and cells, including liver, testis, and pancreas. AQP8 appears to have functions on the plasma membrane and/or on the mitochondrial inner membrane. Mitochondrial AQP8 with permeability for water, H2O2 and NH3 has been expected to have important role in various cells, but its information is limited to a few tissues and cells including liver and kidney. In the present study, we found that AQP8 was expressed in the mitochondria in mouse adipose tissues and 3T3-L1 preadipocytes, and investigated its role by suppressing its gene expression.MethodsAQP8-knocked down (shAQP8) cells were established using a vector expressing short hairpin RNA. Cellular localization of AQP8 was examined by western blotting and immunocytochemistry. Mitochondrial function was assessed by measuring mitochondrial membrane potential, oxygen consumption and ATP level measurements.ResultsIn 3T3-L1 cells, AQP8 was expressed in the mitochondria. In shAQP8 cells, mRNA and protein levels of AQP8 were decreased by about 75%. The shAQP8 showed reduced activities of complex IV and ATP synthase; it is probable that the impaired mitochondrial water handling in shAQP8 caused suppression of the electron transport and ADP phosphorylation through inhibition of the two steps which yield water. The reduced activities of the last two steps of oxidative phosphorylation in shAQP8 cause low routine and maximum capacity of respiration and mitochondrial hyperpolarization.ConclusionMitochondrial AQP8 contributes to mitochondrial respiratory function probably through maintenance of water homeostasis.General significanceThe AQP8-knocked down cells we established provides a model system for the studies on the relationships between water homeostasis and mitochondrial function.  相似文献   

12.
目的 研究灵芝多糖对3T3-L1胰岛素抵抗细胞模型PI-3K p85和GLUT4蛋白表达的影响,探讨灵芝多糖改善胰岛素抵抗的分子机制.方法 3T3-L1前脂肪细胞经1-甲基-3-异丁基-黄嘌呤、地塞米松、胰岛素诱导分化成3T3-L1脂肪细胞,以葡萄糖氧化酶法测定培养液中残余的葡萄糖含量.比较二甲双胍组,检测培养液中葡萄糖含量及PI-3K p85和GLUT4蛋白表达变化.结果 地塞米松联合胰岛素诱导3T3-L1脂肪细胞产生胰岛素抵抗,细胞对葡萄糖的摄取量减少.灵芝多糖可改善3T3-L1脂肪细胞胰岛素抵抗.胰岛素抵抗细胞的PI-3K p85和GLUT4蛋白表达明显减少;应用灵芝多糖后,相关蛋白表达增加.结论 灵芝多糖通过提高PI-3K p85和GLUT4蛋白的表达,参与胰岛素抵抗状态下3T3-L1细胞的葡萄糖代谢.  相似文献   

13.
14.
In a previous study, retrofractamide A from the fruit of Piper chaba was shown to promote adipogenesis in 3T3-L1 cells. In the present study, retrofractamide A and its derivatives were synthesized, and their adipogenetic effects in 3T3-L1 cells were examined. Among the tested compounds, an amide composed of 9-(3′,4′-methylenedioxyphenyl)-nona-2E,4E,8E-trienoic acid and an n-butyl or n-pentyl amine showed strongest activity. Moreover, the amide with the n-pentyl amine moiety significantly increased the uptake of 2-deoxyglucose into the cells, and also increased the mRNA levels of adiponectin, peroxisome proliferator-activated receptor γ2 (PPARγ2), glucose transporter 4 (GLUT4), fatty acid-binding protein (aP2), and CCAAT/enhancer-binding protein (C/EBP) α and β in a similar manner as the PPARγ agonist troglitazone, although it had less agonistic activity against PPARγ.  相似文献   

15.
目的:观察体外培养条件下3T3-L1脂肪前体细胞诱导分化成的成熟脂肪细胞中解偶联蛋白2(UCP2)mRNA表达水平及黄体酮对其表达的影响。方法:体外培养3T3-L1脂肪细胞,在诱导3T3-L1脂肪细胞分化成熟后,经不同黄体酮浓度10μm/25μM/50μM/75μM/100μM刺激后,抽提总RNA,用RT-PCR检测UCP2 mRNA的表达。结果:黄体酮会促进成熟脂肪细胞中UCP2 mRNA的表达,(P<0.05)其中25μM浓度刺激下UCP2 mRNA表达量最高。结论:体外培养中,黄体酮对成熟脂肪细胞中UCP2 mRNA的表达与调控具有一定的影响。  相似文献   

16.
Zinc (Zn) is an essential trace element with multiple regulatory functions, involving insulin synthesis, secretion, signaling and glucose transport. Since 2000, we have proposed that Zn complexes with different coordination environments exhibit high insulinomimetic and antidiabetic activities in type 2 diabetic animals. However, the molecular mechanism for the activities is still unsolved. The purpose of this study was to reveal the molecular mechanism of several types of Zn complexes in 3T3-L1 adipocytes, with respect to insulin signaling pathway. Obtained results shows that bis(1-oxy-2-pyridine-thiolato)Zn(II), Zn(opt)2, with S(2)O(2) coordination environment induced most strongly Akt/protein kinase B (Akt/PKB) phosphorylation, in which the optimal phosphorylation was achieved at a concentration of 25 microM, and this Zn(opt)2-induced Akt/PKB phosphorylation was inhibited by wortmannin at 100 nM. Further, the phosphorylation was maximal at 5-10 min stimulation, in agreement with the Zn uptake which was also maximal at 5-10 min stimulation. The Akt/PKB phosphorylation was in concentration- and time-dependent manners. Zn(opt)2 was also capable to translocate GLUT4 protein to the plasma membrane. We conclude that Zn(opt)2 was revealed to exhibit both insulinomimetic and antidiabetic activities by activating insulin signaling cascade through Akt/PKB phosphorylation, which in turn caused the GLUT4 translocation from the cytosol to the plasma membrane.  相似文献   

17.
tub encodes a protein of poorly understood function, but one implicated strongly in the control of energy balance and insulin sensitivity. Whilst tub expression is particularly prominent in neurones it is also detectable in extraneuronal tissues. We show here, for the first time, expression of TUB protein in rat adipocytes and the murine adipocyte model 3T3-L1 and demonstrate that insulin induces its tyrosine phosphorylation and association with the insulin receptor. TUB expression is regulated developmentally during adipogenic differentiation of 3T3-L1 cells and in response to cell treatment with thyroid hormone or induction of insulin resistance. TUB was upregulated 5- to 10-fold in adipocytes from obese Zucker rats and 3T3-L1 adipocytes that had been rendered insulin resistant, a response that could be antagonised by rosiglitasone, an insulin-sensitising drug. Our data are consistent with a previously unforeseen role for TUB in insulin signalling and fuel homeostasis in adipocytes.  相似文献   

18.
Insulin activates glucose transport by promoting translocation of the insulin-sensitive fat/muscle-specific glucose transporter GLUT4 from an intracellular storage compartment to the cell surface. Here we report that an optimal insulin effect on glucose uptake in 3T3-L1 adipocytes is dependent upon expression of both PIKfyve, the sole enzyme for PtdIns 3,5-P(2) biosynthesis, and the PIKfyve activator, ArPIKfyve. Small-interfering RNAs that selectively ablated PIKfyve or ArPIKfyve in this cell type depleted the PtdIns 3,5-P(2) pool and reduced insulin-activated glucose uptake to a comparable degree. Combined loss of PIKfyve and ArPIKfyve caused further PtdIns 3,5-P(2) ablation that correlated with greater attenuation in insulin responsiveness. Loss of PIKfyve-ArPIKfyve reduced insulin-stimulated Akt phosphorylation and the cell surface accumulation of GLUT4 or IRAP, but not GLUT1-containing vesicles without affecting overall expression of these proteins. ArPIKfyve and PIKfyve were found to physically associate in 3T3-L1 adipocytes and this was insulin independent. In vitro labeling of membranes isolated from basal or insulin-stimulated 3T3-L1 adipocytes documented substantial insulin-dependent increases of PtdIns 3,5-P(2) production on intracellular membranes. Together, the data demonstrate for the first time a physical association between functionally related PIKfyve and ArPIKfyve in 3T3-L1 adipocytes and indicate that the novel ArPIKfyve-PIKfyve-PtdIns 3,5-P(2) pathway is physiologically linked to insulin-activated GLUT4 translocation and glucose transport.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号