首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Circadian (24 hour) PERIOD (PER) protein oscillation is dependent on the double-time (dbt) gene, a casein kinase Ivarepsilon homolog [1-3]. Without dbt activity, hypophosphorylated PER proteins over-accumulate, indicating that dbt is required for PER phosphorylation and turnover [3,4]. There is evidence of a similar role for casein kinase Ivarepsilon in the mammalian circadian clock [5,6]. We have isolated a new dbt allele, dbt(ar), which causes arrhythmic locomotor activity in homozygous viable adults, as well as molecular arrhythmicity, with constitutively high levels of PER proteins, and low levels of TIMELESS (TIM) proteins. Short-period mutations of per, but not of tim, restore rhythmicity to dbt(ar) flies. This suppression is accompanied by a restoration of PER protein oscillations. Our results suggest that short-period per mutations, and mutations of dbt, affect the same molecular step that controls nuclear PER turnover. We conclude that, in wild-type flies, the previously defined PER'short domain' [7,8] may regulate the activity of DBT on PER.  相似文献   

4.
Double-time (dbt) is a casein kinase gene involved in cell survival, proliferation, and circadian rhythms in the fruit fly, Drosophila melanogaster. Genetic and biochemical studies have shown that dbt and its mammalian ortholog casein kinase I epsilon (hckI epsilon) regulate the circadian phosphorylation of period (per), thus controlling per subcellular localization and stability. Mutations in these kinases can shorten the circadian period in both mammals and Drosophila. Since similar activities in circadian clock have been described for these kinases, we investigated whether the expression of mammalian casein kinase I can replace the activity of dbt in flies. Global expression of the full-length dbt rescued lethality of the null mutant dbt revVIII and rescued flies showed normal locomotor activity rhythms. Global expression of dbt also restored the locomotor activity rhythm of the arrhythmic genotype, dbt ar/dbt revVIII. In contrast, global expression of hckI epsilon or hckI alpha did not rescue lethality or locomotor activity of dbt mutants. Furthermore dbt overexpression in wild-type clock cells had only a small effect on period length, whereas hckI epsilon expression in clock cells greatly lengthened period to ~30.5 hours and increased the number of arrhythmic flies. These results indicate that hckI epsilon cannot replace the activity of dbt in flies despite the high degree of similarity in primary sequence and kinase function. Moreover, expression of hck Iepsilon in flies appears to interfere with dbt activity. Thus, caution should be used in interpreting assays that measure activity of mammalian casein kinase mutants in Drosophila, or that employ vertebrate CKI in studies of dPER phosphorylations.  相似文献   

5.
6.
7.
B Kloss  A Rothenfluh  M W Young  L Saez 《Neuron》2001,30(3):699-706
The clock gene double-time (dbt) encodes an ortholog of casein kinase Iepsilon that promotes phosphorylation and turnover of the PERIOD protein. Whereas the period (per), timeless (tim), and dClock (dClk) genes of Drosophila each contribute cycling mRNA and protein to a circadian clock, dbt RNA and DBT protein are constitutively expressed. Robust circadian changes in DBT subcellular localization are nevertheless observed in clock-containing cells of the fly head. These localization rhythms accompany formation of protein complexes that include PER, TIM, and DBT, and reflect periodic redistribution between the nucleus and the cytoplasm. Nuclear phosphorylation of PER is strongly enhanced when TIM is removed from PER/TIM/DBT complexes. The varying associations of PER, DBT and TIM appear to determine the onset and duration of nuclear PER function within the Drosophila clock.  相似文献   

8.
9.
10.
11.
Timing of circadian activities is controlled by rhythmic expression of clock genes in pacemaker neurons in the insect brain. Circadian behavior and clock gene expression can entrain to both thermoperiod and photoperiod but the availability of such cues, the organization of the brain, and the need for circadian behavior change dramatically during the course of insect metamorphosis. We asked whether photoperiod or thermoperiod entrains the clock during pupal and pharate adult stages by exposing flies to different combinations of thermoperiod and photoperiod and observing the effect on the timing of adult eclosion. This study used qRT-PCR to examine how entrainment and expression of circadian clock genes change during the course of development in the flesh fly, Sarcophaga crassipalpis. Thermoperiod entrains expression of period and controls the timing of adult eclosion, suggesting that the clock gene period may be upstream of the eclosion pathway. Rhythmic clock gene expression is evident in larvae, appears to cease during the early pharate adult stage, and resumes again by the time of adult eclosion. Our results indicate that both patterns of clock gene expression and the cues to which the clock entrains are dynamic and respond to different environmental signals at different developmental stages in S. crassipalpis.  相似文献   

12.
In both mammals and fruit flies, casein kinase I has been shown to regulate the circadian phosphorylation of the period protein (PER). This phosphorylation regulates the timing of PER's nuclear accumulation and decline, and it is necessary for the generation of circadian rhythms. In Drosophila melanogaster, mutations affecting a casein kinase I (CKI) ortholog called doubletime (dbt) can produce short or long periods. The effects of both a short-period (dbt(S)) and long-period (dbt(L)) mutation on DBT expression and biochemistry were analyzed. Immunoblot analysis of DBT in fly heads showed that both the dbt(S) and dbt(L) mutants express DBT at constant levels throughout the day. Glutathione S-transferase pull-down assays and coimmunoprecipitation of DBT and PER showed that wild-type DBT, DBT(S), and DBT(L) proteins can bind to PER equivalently and that these interactions are mediated by the evolutionarily conserved N-terminal part of DBT. However, both the dbt(S) and dbt(L) mutations reduced the CKI-7-sensitive kinase activity of an orthologous Xenopus laevis CKIdelta expressed in Escherichia coli. Moreover, expression of DBT in Drosophila S2 cells produced a CKI-7-sensitive kinase activity which was reduced by both the dbt(S) and dbt(L) mutations. Thus, lowered enzyme activity is associated with both short-period and long-period phenotypes.  相似文献   

13.
【目的】MiRNAs在昆虫变态发育过程中发挥非常重要的作用。对家蚕Bombyx mori miRNAs及靶基因的研究将有助于阐明miRNAs参与调控家蚕变态发育的分子机制。【方法】往家蚕5龄第2天幼虫血淋巴注射蜕皮激素20E后,qRT-PCR检测miR-2769在家蚕脂肪体中的表达;通过生物信息学方法预测家蚕miR-2769的靶基因;利用双荧光酶报告载体系统分析miR-2769与预测靶基因BmE75B的互作;qRT-PCR检测miR-2769及其靶基因BmE75不同剪接体在家蚕不同发育时期(幼虫、蛹和成虫)和幼虫不同组织(头、表皮、丝腺、脂肪体、精巢、卵巢、马氏管、中肠和血淋巴)中的表达量。【结果】研究结果表明,miR-2769可通过与家蚕BmE75B的3′UTR区结合位点的互作,显著抑制荧光素酶报告基因的表达。qRT-PCR结果表明,miR-2769和BmE75A/BmE75B在20E诱导家蚕脂肪体中表达趋势相反。时空表达分析结果表明,miR-2769与BmE75的不同剪接体在家蚕不同发育时期和不同组织中均具有特异性表达特征。在家蚕变态发育的不同阶段,miR-2769和BmE75A的...  相似文献   

14.
Although overt diurnal rhythms of behavior do not begin until well after birth, molecular studies suggest that the circadian clock may begin much earlier at a cellular level: mouse embryonic fibroblasts, for example, already possess robust clocks. By multiple criteria, we found no circadian clock present in mouse embryonic stem cells. Nevertheless, upon their differentiation into neurons, circadian gene expression was observed. In the first steps along the pathway from ES cells to neurons, a neural precursor cell (NPC) line already showed robust circadian oscillations. Therefore, at a cellular level, the circadian clock likely begins at the very earliest stages of mammalian development.  相似文献   

15.
Hu P  Wang J  Hu B  Lu L  Xuan Q  Qin YH 《Peptides》2012,34(1):98-105
The cDNAs encoding allatotropin (AT) and allatotropin-like peptides (ATLPs) were isolated from the silkworm, Bombyx mori. Similar to those of the tobacco hornworm, Manduca sexta, four peptides (AT, ATLP1, ATLP2, and ATLP3) are present in three different variants generated by alternative splicing. RT-PCR analyses showed that these splice variants are expressed in the central nervous system with differing expression patterns in each ganglion. Immunohistochemistry using an anti-AT antibody confirmed that AT-expressing cells were located in these central nervous ganglia as well as in two large anterior cells of the frontal ganglia. Injection of synthetic AT and ATLP-1 into B. mori larvae increased the latency to feed, indicating that AT and ATLP might function in the regulation of feeding behavior in B. mori.  相似文献   

16.
17.
Circadian rhythms are common in many cell types but are reported to be lacking in embryonic stem cells. Recent studies have described possible interactions between the molecular mechanism of circadian clocks and the signaling pathways that regulate stem cell differentiation. Circadian rhythms have not been examined well in neural stem cells and progenitor cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circadian timing abilities of cells undergoing neural differentiation, neurospheres were prepared from the mouse subventricular zone (SVZ), a rich source of adult neural stem cells. Circadian rhythms in mPer1 gene expression were recorded in individual spheres, and cell types were characterized by confocal immunofluorescence microscopy at early and late developmental stages in vitro. Circadian rhythms were observed in neurospheres induced to differentiate into neurons or glia, and rhythms emerged within 3–4 days as differentiation proceeded, suggesting that the neural stem cell state suppresses the functioning of the circadian clock. Evidence was also provided that neural stem progenitor cells derived from the SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm without input from known circadian pacemakers of the organism. Expression of mPer1 occurred in high frequency oscillations before circadian rhythms were detected, which may represent a role for this circadian clock gene in the fast cycling of gene expression responsible for early cell differentiation.  相似文献   

18.
19.
Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue.  相似文献   

20.
The photo-responsiveness of 2 groups of interneurons responding to light in the protocerebrum was investigated at 2 developmental stages, the last instar nymphs and adults, in the cricket Gryllus bimaculatus. The cricket is diurnally active during the nymphal stage but becomes nocturnal as an adult. In both adults and nymphs, light-induced responses of optic lobe light-responding interneurons that conduct light information from the optic medulla to the lobula and the cerebral lobe showed a circadian rhythm peaking during the subjective night. Amplitudes of the rhythms were not significantly different between adults and nymphs, but adults showed more stable day and night states than did nymphs. The medulla bilateral neurons that interconnect the bilateral medulla areas of the optic lobe also showed circadian rhythms in their light-induced responses in both adults and nymphs. The rhythm had a clear peak and a trough in adults, and its amplitude was significantly greater than that of nymphs. These results suggest that the 2 classes of interneurons are differentially controlled by the circadian clock. The difference might be related to their functional roles in the animal's circadian behavioral organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号