首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Overexpression of the asnA gene from Escherichia coli K-12 coding for asparagine synthetase (EC 6.3.1.1) was achieved with a plasmid, pUNAd37, a derivative of pUCI8, in E. coli. The plasmid was constructed by optimizing a DNA sequence between the promoter and the ribosome binding region. The enzyme, comprising ca. 15%, of the total soluble protein in the E. coli cell, was readily purified to apparent homogeneity by DEAE-Cellulofine and Blue-Cellulofine column chromatographies. The amino-terminal sequence, amino acid composition, and molecular weight of the purified protein agreed with the predicted values based on the DNA sequence of the gene. Furthermore the native molecular weight measured by gel filtration confirmed that asparagine synthetase exists as a dimer of identical subunits.  相似文献   

3.
N-Glycosidase F (peptide-N4-(N-acetyl-beta-glycosaminyl)asparagine amidase; EC 3.5.1.52) catalyzes the cleavage of N-glycosidically linked carbohydrate chains between N-acetylglucosamine and asparagine. The structural gene was isolated by screening a Flavobacterium meningosepticum genomic DNA library in lambda gt10 with oligonucleotides, deduced from partial amino acid sequences of the protein. A clone with an open reading frame of 1062 bases was obtained. The amino acid sequence reveals a 42-residue-long leader peptide, which shows similarities to the endoglycosidase H-leader with respect to the cleavage site of the signal peptide, but is distinct from the ones known from other Gram-positive or -negative bacteria. The molecular weight of the native protein, derived from the DNA sequence, is in agreement with the molecular weight of the purified protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (35,000). Escherichia coli, transformed with a plasmid containing this DNA sequence, expresses N-glycosidase F activity. The enzyme with its natural Flavobacterium promoter and leader peptide is not secreted in E. coli but seems to be associated with cell membranes.  相似文献   

4.
In order to explore the structure--function relationship of the Escherichia coli asparagine synthetase A it was necessary to devise a system for overexpression of the gene and purification of the gene product. The E. coli asparagine synthetase A structural gene was fused to the 3' end of the human carbonic anhydrase II structural gene and overexpressed in E. coli. The gene product, a 66 kDa fusion protein, which exhibited asparagine synthetase activity, was purified in a single step by affinity chromatography and used as the antigen for the production of monoclonal antibodies. The monoclonal antibodies were screened by ELISA. Colonies were chosen which were positive for purified fusion protein and negative for purified human carbonic anhydrase II. The E. coli asparagine synthetase A gene was then overexpressed and the gene product was used without purification for the final screen. The antibodies selected were used for immunoaffinity chromatography to purify the recombinant overexpressed E. coli asparagine synthetase A. Thus, a procedure is now available so that asparagine synthetase A can be purified to homogeneity in a single step.  相似文献   

5.
6.
A plasmid carrying a 2.4-kilobase-pair fragment of DNA from Pseudomonas sp. strain PG2982 has been isolated which was able to increase the glyphosate resistance of Escherichia coli cells. The increase in resistance was dependent on the presence of a plasmid-encoded protein with a molecular weight of approximately 33,000, the product of a translational fusion between a gene on the vector, pACYC184, and the insert DNA. An overlapping region of the PG2982 chromosome carrying the entire gene (designated igrA) was cloned, and a plasmid (pPG18) carrying the gene was also able to increase glyphosate resistance in E. coli. A protein with a molecular weight of approximately 40,000 was encoded by the PG2982 DNA contained in pPG18. This plasmid was not able to complement a mutation in the gene for 5-enolpyruvylshikimate-3-phosphate synthase (aroA) in E. coli, and modification of glyphosate by E. coli cells containing the plasmid could not be demonstrated. The nucleotide sequence of the PG2982 DNA contained an open reading frame able to encode a protein with a calculated molecular weight of 39,396.  相似文献   

7.
A plasmid carrying a 2.4-kilobase-pair fragment of DNA from Pseudomonas sp. strain PG2982 has been isolated which was able to increase the glyphosate resistance of Escherichia coli cells. The increase in resistance was dependent on the presence of a plasmid-encoded protein with a molecular weight of approximately 33,000, the product of a translational fusion between a gene on the vector, pACYC184, and the insert DNA. An overlapping region of the PG2982 chromosome carrying the entire gene (designated igrA) was cloned, and a plasmid (pPG18) carrying the gene was also able to increase glyphosate resistance in E. coli. A protein with a molecular weight of approximately 40,000 was encoded by the PG2982 DNA contained in pPG18. This plasmid was not able to complement a mutation in the gene for 5-enolpyruvylshikimate-3-phosphate synthase (aroA) in E. coli, and modification of glyphosate by E. coli cells containing the plasmid could not be demonstrated. The nucleotide sequence of the PG2982 DNA contained an open reading frame able to encode a protein with a calculated molecular weight of 39,396.  相似文献   

8.
We have subcloned the asnA gene of E. coli K-12, a gene coding for asparagine synthetase, from a previously cloned 6 mega-dalton segment of E. coli chromosome containing the DNA replication origin, ori, and asnA. The complete nucleotide sequence of the asnA gene was determined: the region of the structural gene extends 990 base-pairs at nucleotide positions 1434-2423 (see Fig. 3), which codes for a polypeptide of 330 amino-acid residues with a molecular weight of 36,688 daltons. The nucleotide sequences of the promoter and the ribosome-binding site of the gene are also assigned. We discuss the properties of its polypeptide.  相似文献   

9.
水通道蛋白(Aquaporin,AQP)是一类选择性高效转运水分子的细胞膜通道蛋白,广泛存在于原核和真核生物细胞的细胞膜上,主要介导自由水分子的被动跨膜转运,对保持细胞内外液环境的稳态平衡起着重要的作用.  相似文献   

10.
We have introduced the T4 thymidylate synthetase gene, resident in a 2.7-kilobase EcoRI restriction fragment, into an amplification plasmid, pKC30. By regulating expression of this gene from the phage lambda pL promoter within pKC30 in a thyA host containing a temperature-sensitive lambda repressor, the T4 synthetase could be amplified about 200-fold over that after T4 infection. At this stage, a 20-fold purification was required to obtain homogeneous enzyme, mainly by an affinity column procedure. The purified plasmid-amplified T4 synthetase appeared to be identical with the T2 phage synthetase purified from phage-infected Escherichia coli in molecular weight, amino end group analysis, and immunochemical reactivity. The individual nature of the phage and host proteins was revealed by the fact that neither the T2 nor the T4 enzyme reacted with antibody to the E. coli synthetase, nor did antibody to the phage enzymes react with the E. coli synthetase. These differences were corroborated by DNA hybridization experiments, which revealed the absence of apparent homology between the T4 and E. coli synthetase genes. The techniques and genetic constructions described support the feasibility of employing similar amplification methods to prepare highly purified thymidylate synthetases from other sources.  相似文献   

11.
The dnaJ and dnaK genes are essential for replication of Escherichia coli DNA, and they constitute an operon, dnaJ being downstream from dnaK. The amount of the dnaJ protein in E. coli is substantially less than that of the dnaK protein, which is produced abundantly. In order to construct a system that over-produces the dnaJ protein, we started our study by determining the DNA sequence of the entire dnaJ gene, and an operon fusion was constructed by inserting the gene downstream of the lambda PL promoter of an expression vector plasmid, pPL-lambda. Cells containing the recombinant plasmid produced dnaJ protein amounting to 2% of the total cellular protein when cells were induced. The overproduced protein was purified, and Edman degradation of the protein indicated that the NH2-terminal methionine was found to be processed. From the DNA sequence of the dnaJ gene, the processed gene product is composed of 375 amino acid residues, and its molecular weight is calculated to be 40,975.  相似文献   

12.
A gene encoding cobalamin-dependent methionine synthase (EC 2.1.1.13) has been isolated from a plasmid library of Escherichia coli K-12 DNA by complementation to methionine prototrophy in an E. coli strain lacking both cobalamin-dependent and -independent methionine synthase activities (RK4536:metE, metHH). Maxicell expression of a series of plasmids containing deletions in the metH structural gene was employed to map the position and orientation of the gene on the cloned DNA fragment. A 6.3-kilobase EcoRI-SalI fragment containing the gene was cloned into the sequencing vector pGEM3B for double-stranded DNA sequencing; the MetH coding region consists of 3372 nucleotides. The enzyme was purified from an overproducing strain of E. coli harboring the recombinant plasmid, in which the level of methionine synthase was elevated 30- to 40-fold over wild-type E. coli. Recombinant enzyme is a protein of 123,640 molecular weight and has a turnover number of 1,450 min-1 in the standard assay. These values are to be compared with previously reported values of 133,000 for the molecular weight and 1,240-1,560 min-1 for the turnover number of the homogenous enzyme purified from a wild-type strain of E. coli B (Frasca, V., Banerjee, R. V., Dunham, W. R., Sands, R. H., and Matthews, R. G. (1988) Biochemistry 27, 8458-8465). Limited proteolysis of the native enzyme with trypsin resulted in loss of enzyme activity but retention of bound cobalamin on a peptide fragment of 28,000 molecular weight. This fragment has been shown to extend from residue 643 to residue 900 of the 1124-residue deduced amino acid sequence.  相似文献   

13.
DNA sequence of the gene coding for Escherichia coli ribonuclease H   总被引:23,自引:0,他引:23  
The gene for Escherichia coli ribonuclease H has been studied by use of a plasmid which contains a segment of the E. coli chromosome. The genomic DNA was subcloned from pLC28-22 to pBR322 by use of various restriction enzymes. Such subcloning limited the RNase H gene to a piece of DNA no longer than 760 base pairs. Cells bearing plasmids containing the RNase H gene produce as much as 10-15 times the normal amount of RNase H without any drastic effect on maintenance of the plasmid or cell growth. DNA sequence analysis has permitted the prediction of a protein whose molecular weight is 17,559 (155 amino acid residues). The predicted sequence was confirmed by amino acid analysis, NH2-terminal amino acid sequence, and size determination of highly purified RNase H.  相似文献   

14.
The DNA sequence of the Escherichia coli metK gene has been determined. Protein sequence data for purified S-adenosylmethionine synthetase have also been obtained and confirm that metK is the structural gene for S-adenosylmethionine synthetase in E. coli. The sequence of the amino-terminal 35 residues of purified S-adenosylmethionine synthetase localizes the beginning of the coding region of the DNA. The open reading frame extends 1152 bases and codes for a 384-residue protein of Mr = 41,941. The gene is transcribed clockwise on the E. coli chromosome. The DNA region 5' to the coding region was found to contain symmetrical sequences suggestive of operator structures and homologous to sequences upstream from other met genes sharing the same regulatory mechanism.  相似文献   

15.
We have isolated a lambda-transducing phage carrying the gene (glnS) for Escherichia coli glutaminyl-tRNA synthetase. The location of the glnS gene within the 13.5-kilobase E. coli DNA transducing fragment was determined by genetic means. The glnS gene was recloned into plasmid pBR322 and its nucleotide sequence was established. The DNA sequence translates to a protein of 550 amino acids.  相似文献   

16.
17.
T K Bera  S K Ghosh    J Das 《Nucleic acids research》1989,17(15):6241-6251
The mutL and mutS genes of Vibrio cholerae have been identified using interspecific complementation of Escherichia coli mutL and mutS mutants with plasmids containing the gene bank of V. cholerae. The recombinant plasmid pJT470, containing a 4.7 kb fragment of V. cholerae DNA codes for a protein of molecular weight 92,000. The product of this gene reduces the spontaneous mutation frequency of the E. coli mutS mutant. The plasmid, designated pJT250, containing a 2.5 kb DNA fragment of V. cholerae and coding for a protein of molecular weight 62,000, complements the mutL gene function of E. coli mutL mutants. These gene products are involved in the repair of mismatches in DNA. The complete nucleotide sequence of mutL gene of V. cholerae has been determined.  相似文献   

18.
The FLP protein, a site-specific recombinase encoded by the 2 micron plasmid of yeast, has been purified to near homogeneity from extracts of E. coli cells in which the protein has been expressed. The purification is a three column procedure, the final step employing affinity chromatography. The affinity ligand consists of a DNA polymer with multiple FLP protein binding sites arranged in tandem repeats. This protocol yields 2 mg of FLP protein which is 85% pure. The purified protein is highly active, stable for several months at -70 degrees C and free of detectable nucleases. The molecular weight and N-terminal sequence are identical to that predicted for the FLP protein by the DNA sequence of the gene. Purified FLP protein primarily, but not exclusively, promotes intramolecular recombination. Intermolecular recombination becomes the dominant reaction when E. coli extracts containing no FLP protein are added to the reaction mixture. These extracts are not specifically required for recombination, but demonstrate that some properties previously attributed to FLP protein can be assigned to contaminating proteins present in E. coli.  相似文献   

19.
The ada gene of Escherichia coli encodes O6-methylguanine-DNA methyltransferase, which serves as a positive regulator of the adaptive response to alkylating agents and as a DNA repair enzyme. The gene which can make an ada-deficient strain of E. coli resistant to the cell-killing and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the gene potentially encoded a protein with a calculated molecular weight of 39,217. Since the nucleotide sequence of the cloned gene shows 70% similarity to the ada gene of E. coli and there is an ada box-like sequence (5'-GAATTAAAACGCA-3') in the promoter region, we tentatively refer to this cloned DNA as the adaST gene. The gene encodes Cys-68 and Cys-320, which are potential acceptor sites for the methyl group from the damaged DNA. The multicopy plasmid carrying the adaST gene significantly reduced the frequency of mutation induced by MNNG both in E. coli and in S. typhimurium. The AdaST protein encoded by the plasmid increased expression of the ada'-lacZ chromosome fusion about 5-fold when an E. coli strain carrying both the fusion operon and the plasmid was exposed to a low concentration of MNNG, whereas the E. coli Ada protein encoded by a low-copy-number plasmid increased it about 40-fold under the same conditions. The low ability of AdaST to function as a positive regulator could account for the apparent lack of an adaptive response to alkylation damage in S. typhimurium.  相似文献   

20.
The gene coding aspartate racemase (EC 5.1.1.13) was cloned from the lactic acid bacteria Streptococcus thermophilus IAM10064 and expressed efficiently in Escherichia coli. The 2.1 kilobase pairs long full length clone had an open reading frame of 729 nucleotides coding for 243 amino acids. The calculated molecular weight of 27,945 agreed well with the apparent molecular weight of 28,000 found in sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis of the aspartate racemase purified from S. thermophilus. The N-terminal amino acid sequence from the purified protein exactly matches the derived sequence. In addition, the amino acid composition compiled from the derived sequence is very similar to that obtained from the purified recombinant protein. No significantly homologous proteins were found in a protein sequence data bank. Even the homology scores with alanine racemases of Salmonella typhimurium and Bacillus stearothermophilus were low. Aspartate racemase was overproduced in Escherichia coli NM522 with plasmid pAG6-2-7, which was constructed from two copies of the gene linked with a tac promoter and plasmid vector pUC18. The amount of aspartate racemase increases with the growth of E. coli and almost no degradation of the enzyme was observed. The maximum amount of the produced enzyme reached approx. 20% of the total protein of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号