首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibiotic-resistant bacteria have been observed with increasing frequency over the past decades, driving the search for new drugs and stimulating the interest in natural products sources. Endophytic fungi from medicinal plants represent a great source of novel bioactive compounds useful to pharmaceutical and agronomical purposes. Diaporthe terebinthifolii is an endophytic species isolated from Schinus terebinthifolius, a plant used in popular medicine for several health problems. The strain D. terebinthifolii LGMF907 was previously reported by our group to produce secondary metabolites with biological activity against phytopathogens. Based on these data, strain LGMF907 was chosen for bioprospecting against microorganisms of clinical importance and for characterization of major secondary metabolites. In this study, different culture conditions were evaluated and the biological activity of this strain was expanded. The crude extracts demonstrated high antibacterial activity against Escherichia coli, Micrococcus luteus, Saccharomyces cerevisiae, methicillin-sensitive Staphylococcus aureus, and methicillin-resistant S. aureus. The compounds diaporthin and orthosporin were characterized and also showed activity against the clinical microorganisms evaluated. This study discloses the first isolation of diaporthin and orthosporin from D. terebinthifolii, and revealed the potential of this endophytic fungus to produce secondary metabolites with antimicrobial activity.  相似文献   

2.
Flower scents are known as synomones between flowering plants and pollinators, but very little is known about the synomone involving omnivorous predator. Campylomma chinensis Schuh (Hemiptera: Miridae) is an omnivorous predator that feeds on both small soft-bodied arthropods and plant hosts including purple trailing lantana Lantana montevidensis (Spreng.) Briq. (Lamiales: Verbenaceae). In laboratory experiments, we examined the effect of fresh inflorescences and volatiles of L. montevidensis on the behavior of adult C. chinensis. In a Y-tube olfactometer, we found that the fresh inflorescences of L. montevidensis significantly attracted adult C. chinensis. Then, the volatile compounds from the fresh inflorescences of L. montevidensis were analyzed by gas chromatography coupled with mass spectrometry (GC–MS). The results showed that there were seventeen compounds detected in the inflorescences, and the main components were terpenoids including monoterpenoids and sesquiterpenoids. Moreover, the adults were significantly attracted to the concentration of 5 µl/ml farnesol. The results of the present work implied that the omnivorous mirid C. chinensis used farnesol, a sesquiterpenoid alcohol derivative, to identify and locate its plant hosts. The role of farnesol as a potential synomone for C. chinensis is discussed.  相似文献   

3.
The interest in using the ‘-omics’ approach for nutrition, agriculture, food science and human health have seen an explosive growth in the last years. Particularly, metabolomics analysis is becoming an integral part of a system biological approach for investigating organisms. In this review, the limitations and advantages of NMR spectroscopy and mass spectrometry were discussed in details using the study reported in the literature on different Salvia species (S. hispanica, S. miltiorrhiza, S. officinalis, S. runcinata and S. stenophylla). Both approaches identify and quantify several classes of compounds but not the complete metabolite profile of the plant. A combined approach of these two powerful techniques provides better results allowing to determine both primary and secondary metabolites.  相似文献   

4.
In the present investigation, metabolites of Streptomyces sp. MTN14 and Trichoderma harzianum ThU significantly enhanced biomass yield (3.58 and 3.48 fold respectively) in comparison to the control plants. The secondary metabolites treatments also showed significant augmentation (0.75–2.25 fold) in withanolide A, a plant secondary metabolite. Lignin deposition, total phenolic and flavonoid content in W. somnifera were maximally induced in treatment having T. harzianum metabolites. Also, Trichoderma and Streptomyces metabolites were found much better in invoking in planta contents and antioxidants compared with their live culture treatments. Therefore, identification of new molecular effectors from metabolites of efficient microbes may be used as biopesticide and biofertilizer for commercial production of W. somnifera globally.  相似文献   

5.
6.
Rhodiola rosea L. is a worldwide popular plant with adaptogenic activities that have been and currently are exploited in the traditional medicine of many countries, as well as, examined in a number of clinical trials. More than 140 chemical structures have been identified which belong to several natural product classes, including phenylpropanoid glycosides, phenylethanoids, flavonoids and essential oils, and are mainly stored in the rhizomes and the roots of the plant. A number of mechanisms contribute to the adaptogenic activities of R. rosea preparations and its phytochemical constituents. Among them, the intrinsic inducible mammalian stress responses and their effector proteins, such as heat shock protein 70 (Hsp70), are the most prominent. Due to its popular medicinal use, which has led to depletion of its natural habitats, R. rosea is now considered as endangered in most parts of the world. Conservation, cultivation and micropropagation are all implemented as potential preservation strategies. A number of in vitro systems of R. rosea are being developed as sources of pharmaceutically valuable secondary metabolites. These are greatly facilitated by advances in elucidation of the biosynthetic pathways and the enzymes, which catalyse the production of these secondary metabolites in the plant. In addition, biotechnological approaches show promise towards achieving sustainable production of R. rosea secondary metabolites.  相似文献   

7.
The presented work describes good quality DNA isolation method from mature leaves of some medicinally important plant species, viz. Asparagus racemosus, Withania somnifera, Abrus precatorius, Commiphora wightii and Carissa carandas. These plants hold immense medicinal values due to presence of certain secondary metabolites like polyphenols, terpenes, flavonoids, alkaloids, gums, resins, etc. Although these metabolites are accountable for important medicinal properties and authorize these plants to precedence over others, the same compounds disappoint the researcher while isolating high quality DNA. To overcome this problem, we propose a simple method in which DNA is adroitly bounded to diatomaceous earth in a solution of different chaotropic agent and alienated from intrusive compounds. Presented method affirms that secondary products, along with polysaccharides and proteins, can be perceptibly reduced by using silica matrix along with chaotropic agents. The described method is fast, simple and highly reliable for the isolation of DNA from obstinate plant species.  相似文献   

8.
Economically feasible systems for heterologous production of complex secondary metabolites originating from difficult to cultivate species are in demand since Escherichia coli and Saccharomyces cerevisiae are not always suitable for expression of plant and animal genes. An emerging oilseed crop, Camelina sativa, has recently been engineered to produce novel oil profiles, jet fuel precursors, and small molecules of industrial interest. To establish C. sativa as a system for the production of medicinally relevant compounds, we introduced four genes from Veratrum californicum involved in steroid alkaloid biosynthesis. Together, these four genes produce verazine, the hypothesized precursor to cyclopamine, a medicinally relevant steroid alkaloid whose analogs are currently being tested for cancer therapy in clinical trials. The future supply of this potential cancer treatment is uncertain as V. californicum is slow-growing and not amendable to cultivation. Moreover, the complex stereochemistry of cyclopamine results in low-yield syntheses. Herein, we successfully engineered C. sativa to synthesize verazine, as well as other V. californicum secondary metabolites, in seed. In addition, we have clarified the stereochemistry of verazine and related V. californicum metabolites.  相似文献   

9.
Fossil leaves and associated reproductive structures from the Kundur locality, Amur Region, are examined. A new genus of the unlobed platanaceous leaves, Kunduriphyllum gen. nov. (Platanaceae) is described based on distinctive morphological and epidermal features. The similarity of epidermal characteristics and identical biological damage suggest that the leaves Kunduriphyllum kundurense gen. et comb. nov., staminate inflorescences Kundurianthus, and infructescences Kunduricarpus could be assigned to a single plant.  相似文献   

10.
11.

Objective

Diterpene alkaloids are secondary plant metabolites and chemotaxonomical markers with a strong biological activity. These compounds are characteristic for the Ranunculaceae family, while their occurrence in other taxa is rare. Several species of the Spiraea genus (Rosaceae) are examples of this rarity. Screening Spiraea species for alkaloid content is a chemotaxonomical approach to clarify the classification and phylogeny of the genus. Novel pharmacological findings make further investigations of Spiraea diterpene alkaloids promising.

Results

Seven Spiraea species were screened for diterpene alkaloids. Phytochemical and pharmacological investigations were performed on Spiraea chamaedryfolia, the species found to contain diterpene alkaloids. Its alkaloid-rich fractions were found to exert a remarkable xanthine-oxidase inhibitory activity and a moderate antibacterial activity. The alkaloid distribution within the root was clarified by microscopic techniques.
  相似文献   

12.
Plant terpenes constitute a large class of compounds and have numerous biological roles as either primary or secondary metabolites. Terpene synthases (TPSs) play key roles on catalyzing the formation of different terpenes; they are divided into seven subfamilies based on sequence relatedness (TPSa–h). TPS-a proteins catalyze the formation of sesquiterpenes and diterpenes in plants. Physic nut (Jatropha curcas L.) is an attractive biofuel tree, but its seeds contain diterpene derivatives, which make them inedible for animals. In this study, 59 putative TPS genes (JcTPS01 to JcTPS59) were identified in the physic nut genome, and 26 belong to the TPS-a subfamily. Eight among the 26 TPS-a genes showed expression in developing seeds of physic nut in the present study. After heterologous expression of these eight genes in Escherichia coli and in vitro enzyme assays, six were shown to have TPS activities. Two (JcTPS09 and JcTPS11) catalyzed the production of diterpene casbene, which was consistent with earlier findings. The other four (JcTPS02, 23, 55, and 56) catalyzed the production of sesquiterpenes. These results may facilitate the efforts for identifying TPS genes involving the physic nut terpene synthesize.  相似文献   

13.
The production of specific secondary metabolites in vitro can be improved through medium supplementation with secondary metabolite precursors, plant growth regulators (PGRs), and abiotic and biotic elicitors. In the present study, node and internode explants of Phyllanthus amarus and P. urinaria collected from Karkala region, Udupi District, Karnataka, India, were inoculated aseptically onto Murashige and Skoog (MS) medium for callus induction. Uniform calluses were inoculated onto MS medium fortified with one of two precursor’s cinnamic acid (CA) or phenylalanine (PA), or with naphthalene acetic acid (NAA). After 30 d of treatment, calluses from treatment and control groups were harvested and quantitatively analyzed for three lignans (phyllanthin, hypophyllanthin and niranthin) and an antioxidant (ellagic acid). Increased amounts of the lignans and ellagic acid were obtained through supplementation with CA, PA, and NAA, and higher ellagic acid was present at higher amounts than the three lignans. These results demonstrated that the Phyllanthus species collected from Karkala region (designated “Accessions3”) show substantial response to CA, PA, and NAA treatment and represent a potential source of donor plants with higher amounts of lignans and antioxidants. These plants can be cultivated on a large scale both in vitro and in vivo for production of important bioactive compounds. Production of these compounds can be further enhanced through induction of somaclonal variant plants with higher amounts of bioactive molecule production and through production of transgenic plants overexpressing genes related to lignan- and phenolic-compound biosynthesis.  相似文献   

14.
Cedrela P. Browne is a genus of trees, strictly related to Toona, in the Meliaceae, a family of flowering plants in the order Sapindales, which is among the most diverse sources of secondary metabolites in the Angiospermae. The most abundant metabolites in these genera are limonoids, tetranortriterpenes possessing diverse structural features, apotirucallanes, tirucallanes, and other triterpenes. The chemical constituents isolated from the genera Cedrela and Toona over the past decades, together with their biological activities, have been compiled in this article. The allelochemical and the phytotoxic activity of limonoids and triterpenoids seem to play a crucial role in the ecological function of these metabolites. While, the most promising use in human field seems related to their antimalarial and anti-inflammatory effects, even that further investigation are still needed.  相似文献   

15.
Phenanthrenes represent a relatively small group of aromatic secondary metabolites, which can be divided into three main subgroups (mono-, di-, and triphenanthrenes). Phenanthrenes are reported as an intensively researched field in phytochemistry according to their structural diversity and promising biological activities. Because of their limited occurrence phenanthrenes are considered to be as important taxonomic markers. Juncaceae is a relatively large plant family divided into seven genera of which Juncus and Luzula are the most important ones from phytochemical and pharmacological points of view. To date, almost one hundred natural phenanthrenes have been isolated but only from eight (Juncus acutus, J. effusus, J. inflexus, J. maritimus, J. roemerianus, J. setchuensis, J. subulatus, and Luzula luzuloides) Juncaceae species, including mono-, and diphenanthrenes, and phenanthrene glucosides. Great deal of the isolated compounds are substituted with a vinyl group. This substitution is characteristic exclusively to Juncaceae species. Juncusol (2) was isolated from every investigated species. The richest source of phenanthrenes, as well as the most extensively investigated species is J. effusus. Several isolated compounds possessed different biological activities, e.g. antiproliferative, antimicrobial, anti-inflammatory, antioxidant, spasmolytic, anxiolytic, and antialgal effects. Among them, dehydroeffusol (60) is the most promising one, as it showed antimicrobial, anxiolytic, sedative, spasmolytic, cellular protective and antiproliferative activities. The aim of this review is to summarize the occurrence of phenanthrenes in the family Juncaceae, and give a comprehensive overview of their isolation, structural characteristics and biological activities.  相似文献   

16.
Salacia chinensis L., a perennial medicinal plant, is well-known for its well-documented anti-diabetic properties. The daily growing demand in pharmaceutical industry is stimulating the conservation and wide-ranging production of the plant using plant tissue culture techniques (micropropagation). In the present study, the plants generated by direct micropropagation from nodal explants were assessed using fluorescently labeled RAPD (FRAPD) primers. Although standard RAPD primer bands in agarose gel showed genetic stability, using FRAPD analysis in genetic DNA sequencer as a novel strategy showed more accurate and reliable method has indicated by the evidence in 5% genetic variation. Antioxidant and anti-diabetic activities of micropropagated plants versus mother plant were examined using DPPH, FRAP, α-amylase, and α-glucosidase assays. The results showed that the micropropagated plants, which are able to produce higher amount of secondary metabolites than the mother plant, possess higher in vitro antioxidant and anti-diabetic properties.  相似文献   

17.

Background

Marine actinomycetes are efficient producers of new secondary metabolites that show different biological activities, including antibacterial, antifungal, anticancer, insecticidal, and enzyme inhibition activities.

Methods

The morphological, physiological, and biochemical properties of the strain Streptomyces sp. VITPSA were confirmed by conventional methods. Antibacterial, anti-oxidant, anti-inflammatory, anti-diabetic, and cytotoxic activities of Streptomyces sp. VITPSA extract were determined. The media were optimized for the production of secondary metabolites. Characterization and identification of secondary metabolites were conducted by high-performance liquid chromatography, gas chromatography-mass spectroscopy, and Fourier transform infrared spectroscopy analysis.

Results

The strain showed significant antibacterial, anti-oxidant, and cytotoxic activities, moderate anti-inflammatory activity, and no satisfactory anti-diabetic activity. The ethyl acetate extract of Streptomyces sp. VITPSA showed maximum antibacterial activity against two gram-positive and gram-negative bacteria at 0.5 mg/mL. The antioxidant potential of the crude extract exhibited strong reducing power activity at 0.5 mg/mL with 95.1% inhibition. The cytotoxic effect was found to be an IC50 of 50 μg/mL on MCF-7 cell lines. Experimental design of optimization by one-factor analysis revealed the most favorable sucrose, yeast extract, pH (7.25), and temperature (28°C) conditions for the effective production of secondary metabolites.

Conclusion

This study revealed that Streptomyces sp. VITPSA is an excellent source of secondary metabolites with various bioactivities.
  相似文献   

18.
Lindera plants not only have good ornamental and economic uses but also have great medicinal and therapeutic values. The genus Lindera consists of approximately 100 species that are widely distributed in tropical and subtropical areas throughout the world. This extensive geographical distribution allows Lindera plants to produce diverse secondary metabolites having novel structures. Phytochemical investigations have shown that Lindera plants produce 341 constituents, including sesquiterpenoids, alkaloids, butanolides, lucidones, flavonoids, and phenylpropanoids. Moreover, some Lindera plants show significant chemotaxonomic reference under family Lauraceae and tribe Litseae. Although Lindera plants have various pharmacological and biological properties, their anticancer, antihypertensive, anti-inflammatory, and analgesic properties have been focused in many studies. Butanolides and lucidones have shown great potential in developing anticancer agents while aporphine alkaloids have shown great potential in developing antiarthritic and antinociceptive agents. However, these compounds need to be assessed further by performing in-depth and systematic research.  相似文献   

19.
The genus Diaporthe (asexual state: Phomopsis) comprises pathogenic, endophytic and saprobic species with both temperate and tropical distributions. Although species of Diaporthe have in the past chiefly been distinguished based on host association, studies have confirmed several taxa to have wide host ranges, suggesting that they move freely between hosts, frequently co-colonizing diseased or dead tissue, while some species are known to be host-specific. They are also very frequently isolated as endophytes of seed plants. Due to their importance as plant pathogens, the genus has been thoroughly investigated for secondary metabolites, including during screening programs aimed at the discovery of novel bioactive natural products, but the respective information has never been compiled. Therefore, we have examined the relevant literature to explore and highlight the major classes of metabolites of Diaporthe and their Phomopsis conidial states. These fungi predominantly produce a large number of polyketides, but cytochalasins and other types of commonly encountered fungal secondary metabolites are also predominant in some species. Interestingly, not a single metabolite which is also known from the host plant has ever been isolated as a major component from an endophytic Diaporthe strain, despite the fact that many of the recent studies were targeting endophytic fungi of medicinal plants.  相似文献   

20.
Secondary metabolites of 22 fungal strains (genus Aspergillus, section Usti) isolated at diverse geographic regions, including the Arctic permafrost deposits, were studied. The studied strains were found to synthesize a variety of biologically active compounds, structurally identified as drimane sesqueterpenoids, isoquinoline alkaloids (TMC-120 A?C, derivative 1), meroterpenoids (austalides О and J), and anthraquinone pigments (averufin, versicolorin C). Desferritriacetylfusigen production by A. calidoustus isolates is reported for the first time. The individual spectra of secondary metabolites were used for reidentification of 17 strains, of which 15 were identified as A. calidoustus and two, as A. pseudodeflectus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号