首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SIMILAR TO RCD ONE (SRO) is a small plant-specific gene family, which play essential roles in plant growth and development as well as in abiotic stresses. However, the function of SROs in maize is still unknown. In our study, six putative SRO genes were isolated from the maize genome. A systematic analysis was performed to characterize the ZmSRO gene family. The ZmSRO gene family was divided into two groups according to the motif and intron/exon analysis. Phylogenetic analysis of them with other plants showed that the clades of SROs along with the divergence of monocot and dicot and ZmSROs were more closely with OsSROs. Many abiotic stress response and hormone-induced cis-regulatory elements were identified from the promoter region of ZmSROs. Furthermore, RNA-seq analysis indicated that SRO genes were widely expressed in different tissues and development stages in maize, and the expression divergence was also obviously observed. Analyses of expression in response to PEG6000 and NaCl treatment, in addition to exogenous application of ABA and GA hormones showed that the majority of the members display stress-induced expression patterns. Taken together, our results provide valuable reference for further functional analysis of the SRO gene family in maize, especially in abiotic stress responses.  相似文献   

2.
Plant leucine-rich repeats receptor-like kinases (LRR-RLKs) play key roles in plant growth, development, and responses to environmental stresses. However, the functions of LRR-RLKs in bryophytes are still not well documented. Here, a putative LRR-RLK gene, PnLRR-RLK, was cloned and characterized from the Antarctic moss Pohlia nutans. Phylogenetic analysis revealed that PnLRR-RLK protein was clustered with the Arabidopsis thaliana LRR XI family proteins. Subcellular localization analysis of PnLRR-RLK revealed that it was mainly localized on plasma membrane. The expression of PnLRR-RLK was induced by mock high salinity, cold, drought, and exogenously supplied abscisic acid (ABA) and methyl jasmonate (MeJA). Meanwhile, the overexpression of PnLRR-RLK showed an increased tolerance of transgenic Arabidopsis to salt and ABA stresses than that of the wild type (WT) plants. Furthermore, the expression levels of several salt tolerance genes (AtHKT1, AtSOS3, AtP5CS1, and AtADH1) and an ABA negatively regulating gene AtABI1 were significantly increased in transgenic plants. Meanwhile, the expression levels of ABA biosynthesis genes (AtNCED3, AtABA1, and AtAAO3) and ABA early response genes (AtMYB2, AtRD22, AtRD29A, and AtDREB2A) were decreased in transgenic Arabidopsis after salt stress treatment. Therefore, these results suggested that PnLRR-RLK might involve in regulating salt stress-related and ABA-dependent signaling pathway, thereby contribute to the salinity tolerance of the Antarctic moss P. nutans.  相似文献   

3.
Leaf rolling observed in some crops such as maize, rice, wheat and sorghum is an indicator of decreased water status. Moderate leaf rolling not tightly or early increases the photosynthesis and grain yield of crop cultivars under environmental stresses. Moreover, the effects of exogenous abscisic acid (ABA) on stomatal conductance, water status and synthesis of osmotic compounds are a well-known issue in plants subjected to water deficit. However, it is not clear how the cross-talk of ABA with H2O2 and osmolyte compounds affects the leaf rolling mechanism. Regulation mechanism of leaf rolling by ABA has been first studied in maize seedlings under drought stress induced by polyethylene glycol 6000 (PEG 6000) in this study. ABA treatment under drought stress reduced hydrogen peroxide (H2O2) content and the degree of leaf rolling (%) while the treatment-induced ABA synthesis, osmolyte levels (proline, polyamine and total soluble sugars) and some antioxidant enzyme activities in comparison to the plants that were not treated with ABA. Furthermore, exogenous ABA up-regulated the expression levels of arginine decarboxylase (ADC) and pyrroline-5-carboxylate synthase (P5CS) genes and down-regulated polyamine oxidase (PAO), diamine oxidase (DAO) and proline dehydrogenase (ProDH) gene expressions. When endogenous ABA content was decreased by the treatment of fluoridone (FLU) that is an ABA inhibitor, leaf rolling degree (%), H2O2 content and antioxidant enzyme activities increased, but osmolyte levels, ADC and P5CS gene expressions decreased. Finally, the treatment of ABA to maize seedlings exposed to drought stress resulted in the stimulation of the antioxidant system, osmotic adjustment and reduction of leaf rolling. We concluded that ABA can be a signal compound cross-talking H2O2, proline and polyamines and thus involved in the leaf rolling mechanism by providing osmotic adjustment. The results of this study can be used to provide data for the molecular breeding of maize hybrids with high grain yield by means of moderately rolled leaves.  相似文献   

4.
5.
6.
Abscisic acid (ABA), auxins, and cytokinins (CKs) are known to be closely linked to nitrogen signaling. In particular, CKs control the effects of nitrate availability on plant growth. Our group has shown that treatment with high nitrate concentrations limits root growth and leaf development in maize, and conditions the development of younger roots and leaves. CKs also affect source-sink relationships in plants. Based on these results, we hypothesized that CKs regulate the source-sink relationship in maize via a mechanism involving complex crosstalk with the main auxin indole-3-acetic acid (IAA) and ABA. To evaluate this hypothesis, various CK metabolites, IAA, and ABA were quantified in the roots and in source and sink leaves of maize plants treated with high and normal nitrate concentrations. The data obtained suggest that the cis and trans isomers of zeatin play completely distinct roles in maize growth regulation by a complex crosstalk with IAA and ABA. We demonstrate that while trans-zeatin (tZ) and isopentenyladenine (iP) regulate nitrate uptake and thus control final leaf sizes, cis-zeatin (cZ) regulates source and sink strength, and thus controls leaf development. The implications of these findings relating to the roles of ABA and IAA in plants’ responses to varying nitrate concentrations are also discussed.  相似文献   

7.
8.

Objectives

To characterize the ent-kaurene oxidase (KO) involved in maize (Zea mays) gibberellin (GA) biosynthesis.

Results

Two putative KO genes were identified in maize based on the homologous alignment. Biochemical characterization indicated that one of them encoded a cytochrome P450 monooxygenase (P450) CYP701A26, which reacted with ent-kaurene to form ent-kaurenoic acid, the key intermediate of GA biosynthesis. CYP701A26 showed constitutive expression in active growing tissues and no inducible expression, which led to putative designation of CYP701A26 as the ZmKO. CYP701A26 exhibited substrate promiscuity to catalyze oxidation of other labdane related diterpenes. Another maize KO homologue, CYP701A43 did not show any catalytic activities on ent-kaurene or other tested diterpenes. It exhibited inducible gene expression and might accept unknown substrates to play roles in specialized metabolism for stress response.

Conclusions

CYP701A26 was characterized to exhibit ent-kaurene oxidase activity with substrate promiscuity and might be involved in maize GA biosynthesis, and its homologue CYP701A43 did not show such function and might play roles in stress response.
  相似文献   

9.
10.
11.
Abscisic acid plays a crucial role in the regulation of fruit development and ripening, however, its role in the floral development and the fruit set is still unclear. In the present study, the ABA accumulation and the expression patterns of genes related to ABA metabolism and signalling in sweet cherry were investigated. The results showed that ABA accumulation increased and peaked at stage V in ovary, at stage VI in stamen, and in young fruit it peaked at 7 days after full bloom. The expression pattern of ABA synthetase PaNCED1 was consistent with the changes of ABA accumulation. Among four ABA degradation enzymes PaCYP707As, PaCYP707A4 was highly expressed in ovary, PaCYP707A1 was mainly in stamen, and PaCYP707A2 was in young fruit, and their expressions were reversed to the trend of PaNCED1. With regard to ABA signalling genes, among three ABA receptors PaPYLs, PaPYL2 and PaPYL3 were high expression genes in ovary and in young fruit with similar expression patterns, while PaPYL3 was the high expression gene in stamen. Within six PaPP2Cs, PaPP2C1/2/3 were highly expressed in ovary and young fruit, while PaPP2C3/4 were mainly in stamen. The six PaSnRK2s showed different expression patterns: PaSnRK2.1/2.2/2.4 were highly expressed in ovary and young fruit, while PaSnRK2.1/2.3 were highly expressed in stamen. In situ hybridization results showed that PaPYL3, PaPP2C3 and PaSnRK2.4 were expressed in seed, pulp and fruit peel during fruit set. In conclusion, ABA and its signaling may play an important role in the regulation of floral development and fruit set.  相似文献   

12.
Abscisic acid (ABA) is the most important stress hormone in the regulation of plant adaptation to drought. Owing to the chemical instability and rapid catabolism of ABA, ABA mimic 1 (AM1) is frequently applied to enhance drought resistance in plants, but the molecular mechanisms governed by AM1 on improving drought resistance in Brassica napus are not entirely understood. To investigate the effect of AM1 on drought resistance at the physiological and molecular levels, exogenous ABA and AM1 were applied to the leaves of two B. napus genotypes (Q2 and Qinyou 8) given progressive drought stress. The results showed that the leaves of 50 µM ABA- and AM1-treated plants shared over 60% differential expressed genes and 90% of the enriched functional pathways in Qinyou 8 under drought. AM1 affected the expression of the genes involved in ABA signaling; they down-regulated pyrabactin resistance/PYR1-like (PYR/PYLs), up-regulated type 2C protein phosphatases (PP2Cs), partially up-regulated sucrose non-fermenting 1-related protein kinase 2s (SnRK2s), and down-regulated ABA-responsive element (ABRE)-binding protein/ABRE-binding factors (AREB/ABFs). Additionally, AM1 treatment repressed the expression of photosynthesis-related genes, those mainly associated with the light reaction process. Moreover, AM1 decreased the stomatal conductance, the net photosynthetic rate, and the transpiration rate, but increased the relative water content in leaves and increased survival rates of two genotypes under drought stress. Our findings suggest that AM1 has a potential to improve drought resistance in B. napus by triggering molecular and physiological responses to reduce water loss and impair growth, leading to increased survival rates.  相似文献   

13.
As one of the most important phytohormones, the abscisic acid (ABA) is often used to breed stress-tolerant crop lines with both higher yields and active ingredient contents. In higher plants, the 9-cis-epoxycarotenoid dioxygenase (NCED) has been found to be a regulatory enzyme involved in ABA biosynthesis. In research, the novel gene SmNCED3 was isolated from S. miltiorrhiza. The open reading frame of SmNCED3 was 1725-bp, and it was encoding 574 amino acids with a calculated molecular mass of 63,822 kDa, which was verified by the expression of SmNCED3 in E. coli. The deduced SmNCED3 amino acid sequence had high sequence homology with NCED sequences from other plants and contained a putative chloroplast transit targeting signal peptide at its N terminus. Phylogenetic analysis demonstrated that SmNCED3 had a closer affinity to NCED3 in Arabidopsis thaliana (AtNCED3). The 1732-bp 5′ flanking sequence of SmNCED3 was also cloned. It contained several phytohormone response elements, biotic or abiotic stress-related elements, and plant development-related elements. Real-time PCR revealed that SmNCED3 was highly expressed in leaves, and was strongly induced by exogenous ABA. A subcellular localization experiment indicated that SmNCED3 was located in chloroplast stroma, chloroplast membranes, and thylakoid membranes. The overexpression of SmNCED3 promoted ABA accumulation. These results indicated that SmNCED3 might be a rate-limiting gene regulating ABA biosynthesis, and improving abiotic stresses tolerance and active ingredient contents in plants.  相似文献   

14.
The objectives of this study were to investigate stomatal regulation in maize seedlings during progressive soil drying and to determine the impact of stomatal movement on photosynthetic activity. In well-watered and drought-stressed plants, leaf water potential (Ψ leaf), relative water content (RWC), stomatal conductance (g s), photosynthesis, chlorophyll fluorescence, leaf instantaneous water use efficiency (iWUEleaf), and abscisic acid (ABA) and zeatin-riboside (ZR) accumulation were measured. Results showed that g s decreased significantly with progressive drought and stomatal limitations were responsible for inhibiting photosynthesis in the initial stages of short-term drought. However, after 5 days of withholding water, non-stomatal limitations, such as damage to the PSII reaction center, became the main limiting factor. Stomatal behavior was correlated with changes in both hydraulic and chemical signals; however, changes in ABA and ZR occurred prior to any change in leaf water status. ABA in leaf and root tissue increased progressively during soil drying, and further analysis found that leaf ABA was negatively correlated with g s (R 2 = 0.907, p < 0.05). In contrast, leaf and root ZR decreased gradually. ZR in leaf tissue was positively correlated with g s (R 2 = 0.859, p < 0.05). These results indicate that ABA could induce stomatal closure, and ZR works antagonistically against ABA in stomatal behavior. In addition, the ABA/ZR ratio also had a strong correlation with g s, suggesting that the combined chemical signal (the interaction between ABA and cytokinin) plays a role in coordinating stomatal behavior. In addition, Ψ leaf and RWC decreased significantly after only 3 days of drought stress, also affecting stomatal behavior.  相似文献   

15.
16.
17.
ERFs are downstream component in ethylene signaling pathway and involved in plant’s abiotic stress response. The specific role of ERFs under stress and the molecular mechanism underlying the signaling cross talk still need to be elucidated. This study describes the isolation and characterization of ZmERF1 promoter. There were many cis-regulatory elements related to stress responses in the ZmERF1 promoter sequence. ZmERF1 could be highly induced by ABA and ethylene treatment in maize, suggesting that it might be at the crossroads of multiple hormone signaling pathways. Furthermore, ZmERF1 transgenic Arabidopsis lines (35S::ZmERF1) showed higher salt-tolerant, drought- and heat resistance. Consistently, tolerance-related genes were up-regulated in 35S::ZmERF1 lines compared with the WT plants in Arabidopsis. Overall, ZmERF1 might play an important role in plant resistance to a coercive environment by mediating various physiological processes via ethylene and ABA signaling pathways.  相似文献   

18.
Fusarium verticillioides is one of the main pathogens of maize, causing ear and stalk rots. This fungus is also able to produce high levels of fumonisins, which have been linked to various illnesses in humans and animals. Previous studies have shown that maize hybrids genetically modified with the cry genes from the bacterium Bacillus thuringiensis (Bt) presented lower incidence of F. verticillioides and fumonisin levels, presumably through the reduction of insects, which could act as vectors of fungi. The aim of this study was to assess the incidence of F. verticillioides and the concentration of fumonisins in Bt and isogenic non-Bt hybrids (2B710Hx, 30F35YG, 2B710, and 30F35, respectively). The samples of 2B710Hx and 30F35YG presented lower F. verticillioides frequency than 2B710 and 30F35 samples. However, there was no statistical difference between fumonisin contamination when Bt and non-Bt samples were compared (P > 0.05). The results suggest that other environmental parameters could possibly trigger fumonisin production during plant development in the field; consequently, other management strategies should be applied to aid controlling fumonisin contamination in maize.  相似文献   

19.
Phosphoprotein phosphatase 2A (PP2A) plays a crucial role in cellular processes via reversible dephosphorylation of proteins. The activity of this enzyme depends on its subunits. There is little information about mRNA expression of each subunit and the relationship between these gene expressions and the growth patterns under stress conditions and hormones. Here, mRNA expression of subunit A3 of PP2A and its relationship with growth patterns under different levels of drought stress and abscisic acid (ABA) concentration were analyzed in Arabidopsis thaliana. The mRNA expression profiles showed different levels of the up- and down-regulation of PP2AA3 in roots and shoots of A. thaliana under drought conditions and ABA treatments. The results demonstrated that the regulation of PP2AA3 expression under the mentioned conditions could indirectly modulate growth patterns such that seedlings grown under severe drought stress and those grown under 4 µM ABA had the maximum number of lateral roots and the shortest primary roots. In contrast, the minimum number of lateral roots and the longest primary roots were observed under mild drought stress and 0.5 µM ABA. Differences in PP2AA3 mRNA expression showed that mechanisms involved in the regulation of this gene under drought conditions would probably be different from those that regulate the PP2AA3 expression under ABA. Co-expression of PP2AA3 with each of PIN1-4,7 (PP2A activity targets) depends on the organ type and different levels of drought stress and ABA concentration. Furthermore, fluctuations in the PP2AA3 expression proved that this gene cannot be suitable as a reference gene although PP2AA3 is widely used as a reference gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号